The emerging field of nanotechnology has paved the way for revolutionary advancements in drug delivery systems, with nanosystems emerging as a promising avenue for enhancing the therapeutic potential and the stability of various bioactive compounds. Among these, cannabidiol (CBD), the non-psychotropic compound of the plant, has gained attention for its therapeutic properties. Consequently, researchers have devoted significant efforts to unlock the full potential of CBD's clinical benefits, where various nanosystems and excipients have emerged to overcome challenges associated with its bioavailability, stability, and controlled release for its transdermal application.
View Article and Find Full Text PDFMicrobes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed.
View Article and Find Full Text PDFOf several samples of polyvinyl pyrrolidone (PVP) used to coat and stabilize freshly manufactured aqueous dispersions of silver nanoparticles, one batch gave anomalous results: the dispersion maintained continued stability, even on extensive dilution. Our efforts to understand this desirable feature concluded that the generally used spectral method of PVP purity verification, Fourier transform infrared (FTIR) spectroscopy, was incapable of answering our inquiry. This led to the employment of several other methods, including X-ray photoelectron and nuclear magnetic resonance spectroscopies, which ultimately revealed several possible reasons for the dilution stability, including incomplete PVP hydrolysis during manufacture and the presence of hydroperoxide contaminants.
View Article and Find Full Text PDFSpore-forming pathogenic bacteria, such as , are associated with nosocomial infection, leading to the increased use of sporicidal disinfectants, which impacts socioeconomic costs. However, can be prevented using microorganisms such as , a prophylactic agent that has been proven to be effective against it in recent tests or it can be controlled by sporicidal disinfectants. These disinfectants against spores should be evaluated according to a known and recommended standard.
View Article and Find Full Text PDFIntrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated.
View Article and Find Full Text PDFMuch recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs); one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body.
View Article and Find Full Text PDFThe objective of this study was to determine if surface analysis techniques could be used to detect endotoxin on stainless steel malleolus screws. New malleolus screws were compared to ones that had been coated in purified lipopolysaccharide (LPS) or Artificial Test Soil (ATS) containing lipopolysaccharide. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and time-of flight secondary ion mass spectrometry (TOF-SIMS) were used to assess the fixation screws surface.
View Article and Find Full Text PDFThe characterization of synthetic superparamagnetic iron oxide nanoparticle (SPION) surfaces prior to functionalization is an essential step in the prediction of their successful functionalization, and in uncovering issues that may influence their selection as magnetically targeted drug delivery vehicles (prodrugs). Here, three differently functionalized magnetite (Fe3O4) SPIONs are considered. All were identically prepared by the alkaline coprecipitation of Fe(2+) and Fe(3+) salts.
View Article and Find Full Text PDFBackground: Cerium oxide (CeO2) and Ce-doped nanostructured materials (NMs) are being seen as innovative therapeutic tools due to their exceptional antioxidant effects; nevertheless their bio-applications are still in their infancy.
Methods: TiO2, Ce-TiO2 and CeO2-TiO2 NMs were synthesized by a bottom-up microemulsion-mediated strategy and calcined during 7h at 650°C under air flux. The samples were compared to elucidate the physicochemical characteristics that determine cellular uptake, toxicity and the influence of redox balance between the Ce(3+)/Ce(4+) on the cytoprotective role against an exogenous ROS source: H2O2.
Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared and coated with positively (-NH3(+)) and negatively (-COO(-)) charged shells. These NPs, as well as their "bare" precursor, which actually contain surface hydroxyl groups, have been characterized in vitro, and their influence on a human epithelial cell line has been assessed in terms of cell metabolic activity, cellular membrane lysis, mitochondrial activity, and reactive oxygen species production. Their physicochemical characterizations and protein-nanoparticle interactions have been determined using dynamic light scattering, high-resolution transmission electron microscopy, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry, and Coomassie Blue fast staining.
View Article and Find Full Text PDFSuperparamagnetic carbon-encapsulated iron carbide nanoparticles (NPs), FeC@C, with unique properties, were produced from pure ferrocene by high pressure-high temperature synthesis. These NPs combine the merits of nanodiamonds and SPIONs but lack their shortcomings which limit their use for biomedical applications. Investigation of these NPs by X-ray diffraction, electron microscopy techniques, X-ray spectroscopic and magnetic measurement methods has demonstrated that this method of synthesis yields NPs with perfectly controllable physical properties.
View Article and Find Full Text PDFThe surfaces of three chitosan samples, differing only in their degrees of deacetylation and of carboxyethyl chitosan were chemically characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and Fourier transform infrared, both before and after sterilization with ethylene oxide. Unexpected elemental ratios suggest that surface chemical modification occurred during the processing of the original chitin, with further surface modification on subsequent sterilization, despite previous reports to the contrary. Cell viability was evaluated by direct contact methyl thiazole tetrazolium and lactate dehydrogenase assays between the chitosan particles and A549 human epithelial cells, which demonstrated that the modifications incurred on sterilization are reflected in biocompatibility changes.
View Article and Find Full Text PDFObjectives: It is our aim to understand the mechanisms that make calcium phosphates, such as bioactive calcium hydroxyapatite (HA), and biphasic calcium (BCP) and β-tricalcium (β-TCP) phosphates, desirable for a variety of biological applications, such as the filling of bone defects.
Methods: Here, we have characterized these materials by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and laser granulometry.
Results: SEM shows clearly that BCP is a matrix made of macro-organized microstructure, giving insight to the specially chosen composition of the BCP that offers both an adequate scaffold and good porosity for further bone growth.
The surfaces of three chitosan samples, differing only in their degrees of deacetylation and of carboxyethyl chitosan were chemically characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, X-ray diffraction, and Fourier transform infrared, both before and after sterilization with ethylene oxide. Unexpected elemental ratios suggest that surface chemical modification occurred during the processing of the original chitin, with further surface modification on subsequent sterilization, despite previous reports to the contrary. Cell viability was evaluated by direct contact methyl thiazole tetrazolium and lactate dehydrogenase assays between the chitosan particles and A549 human epithelial cells, which demonstrated that the modifications incurred on sterilization are reflected in biocompatibility changes.
View Article and Find Full Text PDFIn this work a new generation of bioceramic personalized implants were developed. This technique combines the processes of solid freeform fabrication (SFF) and combustion synthesis (CS) to create personalized bioceramic implants with tricalcium phosphate (TCP) and hydroxyapatite (HA). These porous bioceramics will be used to fill the tibial bone gap created by the opening wedge high tibial osteotomy (OWHTO).
View Article and Find Full Text PDFAlginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified.
View Article and Find Full Text PDFVascular PET grafts (Dacron) have shown good performance in large vessels (≥ 6 mm) applications. To address the urgent unmet need for small-diameter (2-6 mm) vascular grafts, proprietary high-compliance nonwoven PET fiber structures were modified with various PEG concentrations using PVA as a cross-linking agent, to fabricate non-thrombogenic mechanically compliant vascular grafts. The blood compatibility assays measured through platelet adhesion (SEM and mepacrine dye) and platelet activation (morphological changes, P-selectin secretion, and TXB2 production) demonstrate that functionalization using a 10% PEG solution was sufficient to significantly reduce platelet adhesion/activation close to optimal literature-reported levels observed on carbon-coated ePTFE.
View Article and Find Full Text PDFOnce placed in a magnetic field, smart magnetic materials (SMM) change their shape, which could be use for the development of smaller minimally invasive surgery devices activated by magnetic field. However, the potential degradation and release of cytotoxic ions by SMM corrosion has to be determined. This paper evaluates the corrosion resistance of two SMM: a single crystal Ni-Mn-Ga alloy and Tb(0.
View Article and Find Full Text PDFNon-woven polyethylene terephthalate (PET) fibers produced via melt blowing and compounded into a 6 mm diameter 3D tubular scaffold were developed with artery matching mechanical properties. This work compares the effects of ethylene oxide (EtO) and low temperature plasma (LTP) sterilization on PET surface chemistry and biocompatibility. As seen through X-ray photoelectron spectroscopy (XPS) analysis, LTP sterilization led to an increase in overall oxygen content and the creation of new hydroxyl groups.
View Article and Find Full Text PDFThe aim of this article was to present a new thermodynamic-based model for bone remodeling which is able to predict the functional adaptation of bone in response to changes in both mechanical and biochemical environments. The model was based on chemical kinetics and irreversible thermodynamic principles, in which bone is considered as a self-organizing system that exchanges matter, energy and entropy with its surroundings. The governing equations of the mathematical model have been numerically solved using Matlab software and implemented in ANSYS software using the Finite Element Method.
View Article and Find Full Text PDFThermally activated shape memory polyurethane foams are promising materials for minimally invasive surgical procedures. Understanding their physical and chemical properties, in vitro response and effects of sterilization is mandatory when evaluating their potential as biomaterials. In this work, we report on the characterization of two Cold Hibernated Elastic Memory (CHEM) foams before and after two novel low-temperature sterilization techniques (plasma and ozone).
View Article and Find Full Text PDFObjective: To evaluate the effect of 6 different knotting methods on the mechanical properties of 3 large absorbable suture materials used in large animal surgery.
Study Design: In vitro mechanical study. Sample Population- Knotted suture loops (n=15 per group).
J Biomed Mater Res B Appl Biomater
May 2010
Alginate is widely used for cell microencapsulation and transplantation. There is a lack of standardization of alginate purity and composition. In a previous study, we compared different alginate purification methods and concluded that polyphenol and endotoxin contaminants were eliminated efficiently but residual protein contaminants persisted with all of the methods under evaluation.
View Article and Find Full Text PDFOur group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions.
View Article and Find Full Text PDFAdaptive bone remodeling is an important factor that leads to bone resorption in the surrounding femoral bone and implant loosening. Taking into account this factor in the design of hip implants is of clinical importance, because it allows the prediction of the bone-density redistribution and enables the monitoring of bone adaptation after prosthetic implantation. In this article, adaptive bone remodeling around a new biomimetic polymer-composite-based (CF/PA12) hip prosthesis is investigated to evaluate the amount of stress shielding and bone resorption.
View Article and Find Full Text PDF