Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Our research comprises two main parts: the first involves preprocessing the large raw AIS dataset to extract features, and the second focuses on trajectory prediction.
View Article and Find Full Text PDFIn the realm of dynamic system analysis, the Kalman filter and the alpha-beta filter are widely recognized for their tracking and prediction capabilities. However, their performance is often limited by static parameters that cannot adapt to changing conditions. Addressing this limitation, this paper introduces innovative neural network-based prediction models that enhance the adaptability and accuracy of these conventional filters.
View Article and Find Full Text PDFGlioblastoma recruits various nontransformed cells from distant tissues. Although bone marrow-derived mesenchymal stem cells (MSCs) have been observed migrating to glioblastoma, the underlying mechanism driving MSC migration toward glioblastoma remains unclear. Tumor vascularity is critical in the context of recurrent glioblastoma and is closely linked to the expression of stromal cell-derived factor-1 (SDF-1).
View Article and Find Full Text PDFMesenchymal stem cells are recruited from the bone marrow into breast tumors, contributing to the creation of a tumor microenvironment that fosters tropism for breast tumors. However, the intrinsic mechanisms underlying the recruitment of bone marrow-derived mesenchymal stem cells (MSCs) into the breast tumor microenvironment are still under investigation. Our discoveries identified zonula occludens-1 (ZO-1) as a specific intrinsic molecule that plays a vital role in mediating the collective migration of MSCs towards breast tumor cells and transforming growth factor beta (TGF-β), which is a crucial factor secreted by breast tumor cells.
View Article and Find Full Text PDFBioengineering (Basel)
November 2023
The application of deep learning for taxonomic categorization of DNA sequences is investigated in this study. Two deep learning architectures, namely the Stacked Convolutional Autoencoder (SCAE) with Multilabel Extreme Learning Machine (MLELM) and the Variational Convolutional Autoencoder (VCAE) with MLELM, have been proposed. These designs provide precise feature maps for individual and inter-label interactions within DNA sequences, capturing their spatial and temporal properties.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2023
Alternative splicing of microexons (3-30 base pairs [bp]) is involved in important biological processes in brain development and human cancers. However, understanding a splicing process of non-3x bp microexons is scarce. We showed that 4 bp microexon of () is constitutively included in mRNA.
View Article and Find Full Text PDFBackground: Most cancer cells employ the Warburg effect to support anabolic growth and tumorigenesis. Here, we discovered a key link between Warburg effect and aberrantly activated Wnt/β-catenin signalling, especially by pathologically significant APC loss, in CRC.
Methods: Proteomic analyses were performed to evaluate the global effects of KYA1797K, Wnt/β-catenin signalling inhibitor, on cellular proteins in CRC.
Transcriptional regulator KAISO plays a critical role in cell cycle arrest and apoptosis through modulation of p53 acetylation by histone acetyltransferase p300. KAISO potently stimulates apoptosis in cells expressing WT p53, but not in p53-mutant or p53-null cells. Here, we investigated how KAISO transcription is regulated by p53, finding four potential p53-binding sites (p53-responsive DNA elements; p53REs) located in a distal 5'-upstream regulatory element, intron 1, exon 2 coding sequence, and a 3'-UTR region.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
August 2019
Overexpressed Solute Carrier Family 16 Member 3 (SLC16A3, also called MCT4) plays a critical role in hypoxic cancer cell growth and proliferation, by expelling glycolysis-derived lactate across the plasma membrane. However, how SLC16A3 expression is regulated, under hypoxic conditions, is poorly understood. FBI-1, encoded by ZBTB7A, is a proto-oncoprotein.
View Article and Find Full Text PDFThe protein deacetylase SIRT1 is crucial to numerous physiological processes, such as aging, metabolism, and autoimmunity, and is repressed by various transcription factors, including HIC1. Conversely, we found that HIC2, which is highly homologous to HIC1, is a transcriptional activator of SIRT1 due to opposite activity of the intermediate domains of the two homologs. Importantly, this relationship between HIC2 and SIRT1 could be important for cardiac development, where both proteins are implicated.
View Article and Find Full Text PDFGluconeogenesis is essential for blood glucose homeostasis during fasting and is regulated by various enzymes, which are encoded by gluconeogenic genes. Those genes are controlled by various transcription factors. Zinc finger and BTB domain-containing 7c (Zbtb7c, also called Kr-pok) is a BTB-POZ family transcription factor with proto-oncogenic activity.
View Article and Find Full Text PDFEven in the face of physiological DNA damage or expression of the tumor suppressor protein p53, B cell CLL/lymphoma 6 (BCL6) increases proliferation and antagonizes apoptotic responses in B cells. BCL6 represses transcription and also appears to inactivate p53 at the protein level, and additional findings have suggested negative mutual regulation between BCL6 and p53. Here, using knockout mice, HEK293A and HCT116 cells, and site-directed mutagenesis, we found that BCL6 interacts with p53 and thereby inhibits acetylation of Lys-132 in p53 by E1A-binding protein p300 (p300), a modification that normally occurs upon DNA damage-induced cellular stress and whose abrogation by BCL6 diminished transcriptional activation of p53 target genes, including that encoding caspase-1.
View Article and Find Full Text PDFMitochondrial pyruvate carrier (MPC), which is essential for mitochondrial pyruvate usage, mediates the transport of cytosolic pyruvate into mitochondria. Low MPC expression is associated with various cancers, and functionally associated with glycolytic metabolism and stemness. However, the mechanism by which MPC expression is regulated is largely unknown.
View Article and Find Full Text PDFAims: We evaluated specific alterations in amino acids (AAs) profile in patients with type 2 diabetes mellitus (T2DM) and impaired fasting glucose (IFG) compared with healthy controls. In addition, we tried to find the mechanisms behind these AA alterations.
Methods: Twenty AAs, TNF-α, and IL-6 were analyzed in fasting serum samples from a total of 198 individuals (56 drug-naïve patients with T2DM, 69 patients IFG, and 73 healthy controls).
The present study aimed to examine the associations between androgen receptor (AR) and forkhead box A1 (FOXA1) and to investigate clinicopathological features and survival according to both biomarker status in estrogen receptor (ER)-positive breast cancers using study, patient cohort data, and the cBioPortal for Cancer Genomics and Kaplan-Meier Plotter websites. Experiments using T47D and ZR75-1 demonstrated AR-overexpressing cell lines decreased in cell proliferation through downregulation of ER, but FOXA1 did not change. Knockdown of FOXA1 resulted in a significantly reduced cell viability.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
September 2017
Expression of the POK family protein ZNF509L, and -its S1 isoform, is induced by p53 upon exposure to genotoxic stress. Due to alternative splicing of the ZNF509 primary transcript, ZNF509S1 lacks the 6 zinc-fingers and C-terminus of ZNF509L, resulting in only one zinc-finger. ZNF509L and -S1 inhibit cell proliferation by activating p21/CDKN1A and RB transcription, respectively.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2016
Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases that play roles in cell proliferation, migration, differentiation, angiogenesis, and apoptosis. The expression of MMP gene is tightly regulated and shows cell- and tissue-specific expression patterns. Despite their differential expression, MMP genes have AP-1 (activator protein-1) binding elements within their promoters.
View Article and Find Full Text PDFBackground: Deprivation of tumor bioenergetics by inhibition of multiple energy pathways has been suggested as an effective therapeutic approach for various human tumors. However, this idea has not been evaluated in glioblastoma (GBM). We hypothesized that dual inhibition of glycolysis and oxidative phosphorylation could effectively suppress GBM tumorspheres (TS).
View Article and Find Full Text PDFRecent advances in next-generation sequencing have revealed a variety of long noncoding RNAs (lncRNAs). However, studies of lncRNAs are at a very early stage, our knowledge of the biological functions and clinical implications remains limited. To investigate the roles of lncRNAs in thyroid cancers, we verified 56 lncRNAs identified as potential cancer-promoting genes in a previous study that analyzed 2394 tumor SNP arrays from 12 types of cancer.
View Article and Find Full Text PDFClear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types.
View Article and Find Full Text PDFThe glycolytic phenotype is a dominant metabolic phenomenon in cancer and is reflected in becoming aggressive. Certain hepatocellular carcinoma lack increased glycolysis and prefer to uptake acetate than glucose for metabolism. Autophagy plays a role in preserving energies and nutrients when there is limited external nutrient supply and maintains glucose level of blood though supporting gluconeogenesis in the liver.
View Article and Find Full Text PDFThe NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65.
View Article and Find Full Text PDFAlthough PDCD5 promotes p53-mediated apoptosis in various cancers, little is known about PDCD5 regulation. We recently found that DNAJB1 interacts with PDCD5 and induces the ubiquitin-dependent proteasomal degradation of PDCD5, thereby inhibiting p53-mediated apoptosis. To investigate these novel roles for PDCD5 and DNAJB1, we performed DNAJB1 mapping with PDCD5.
View Article and Find Full Text PDFPhosphoglucomutase (PGM)1 catalyzes the reversible conversion reaction between glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P). Although both G-1-P and G-6-P are important intermediates for glucose and glycogen metabolism, the biological roles and regulatory mechanisms of PGM1 are largely unknown. In this study we found that T553 is obligatory for PGM1 stability and the last C-terminal residue, T562, is critical for its activity.
View Article and Find Full Text PDFThe major factors and mechanisms by which natural killer (NK) cells are inhibited in cancer patients have not yet been well defined. In this study, we conducted a comparative analysis of the effects of TGF-β, IL-10, and IL-4 on primary NK cells, and it was demonstrated that (1) TGF-β most potently inhibited the overall function of NK cells. (2) It appears that TGF-β reduced the tyrosine phosphorylation of Syk and the expression of c-myc.
View Article and Find Full Text PDF