Publications by authors named "Kyungsun Kang"

Article Synopsis
  • Engraftable hematopoietic stem cells (HSC) can be sourced from bone marrow, umbilical cord blood, and peripheral blood, but finding a matched unrelated donor presents a challenge.
  • The study focused on enhancing the efficiency of producing patient-specific induced pluripotent stem cell-derived hematopoietic stem cells (iHSC) by using an antioxidant treatment (ginsenoside Rg1) and verifying engraftment in mice models.
  • Results showed that iHSC treated with Rg1 had high colony forming efficiency in vitro and successful engraftment in mice conditioned with high doses of busulfan, suggesting a new method for creating HSC that could be used in future transplants and potentially paired with gene-edit
View Article and Find Full Text PDF

Non-invasive imaging techniques employing biomarkers with high selectivity for inflammation are essential not only for the early diagnosis and prevention of chronic inflammatory diseases but also for guiding appropriate drug therapy and enabling real-time evaluation of anti-inflammatory drug efficacy. In this study, we conjugated radioactive zirconium to sorbitol, a compound that can selectively target inflammation, and evaluated its inflammation-specific uptake and potential for assessing anti-inflammatory treatment efficacy in a mouse inflammation model. Pharmacokinetic analysis demonstrated that radiolabeled sorbitol achieved maximal uptake in inflamed tissues within 1 h.

View Article and Find Full Text PDF

As modeling of atherosclerosis requires recapitulating complex interactions with vasculature and immune cells, previous in vitro models have limitations due to their insufficient 3D vascular structures. However, induced pluripotent stem cell-derived blood vessel organoids (BVOs) are applicable for modeling vascular diseases, containing multiple cell types, including endothelial and vascular smooth muscle cells self-assembled into a blood vessel structure. Atherosclerotic BVOs with a microenvironment associated with atherogenesis, such as shear stress, low-density lipoprotein, pro-inflammatory cytokine, and monocyte co-culture are successfully developed.

View Article and Find Full Text PDF
Article Synopsis
  • Solar ultraviolet (sUV) exposure damages skin and hair follicles, but the specific effects on hair follicles have been less studied.
  • Researchers created a model using skin organoids with hair follicles to simulate sUV damage, showing symptoms like skin barrier breakdown and inflammation.
  • They discovered that exosomes from umbilical cord stem cells can reduce inflammation and promote hair follicle recovery, offering new insights for potential treatments in skin-related diseases.
View Article and Find Full Text PDF

In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a promising tool for treating immune disorders. However, the immunomodulatory effects of canine MSCs compared with other commercialized biologics for treating immune disorders have not been well studied. In this study we investigated the characteristics and immunomodulatory effects of canine amnion membrane (cAM)-MSCs.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most well-known neurodegenerative diseases, with a substantial amount of advancements in the field of neuroscience and AD. Despite such progress, there has been no significant improvement in AD treatments. To improve in developing a research platform for AD treatment, AD patient-derived induced pluripotent stem cell (iPSC) was employed to generate cortical brain organoids, expressing AD phenotypes, with the accumulation of amyloid-beta (Aβ) and hyperphosphorylated tau (pTau).

View Article and Find Full Text PDF

Decellularized extracellular matrix scaffold, widely utilized for organ engineering, often undergoes matrix decomposition after transplantation and produces byproducts that cause inflammation, leading to clinical failure. Here we propose a strategy using nano-graphene oxide to modify the biophysical properties of decellularized liver scaffolds. Notably, we demonstrate that scaffolds crosslinked with nano-graphene oxide show high resistance to enzymatic degradation via direct inhibition of matrix metalloproteinase activity and increased mechanical rigidity.

View Article and Find Full Text PDF

A correlation between COVID-19 and Alzheimer's disease (AD) has been proposed recently. Although the number of case reports on neuroinflammation in COVID-19 patients has increased, studies of SARS-CoV-2 neurotrophic pathology using brain organoids have restricted recapitulation of those phenotypes due to insufficiency of immune cells and absence of vasculature. Cerebral pericytes and endothelial cells, the major components of blood-brain barrier, express viral entry receptors for SARS-CoV-2 and response to systemic inflammation including direct cell death.

View Article and Find Full Text PDF

Purpose: Orobol is an isoflavone that has a potent skin protection effect. The objective of this study was to prepare a novel bentonite-based composite formulation of orobol to enhance topical skin delivery.

Methods: The composition was optimized based on the orobol content in the composite and the in vitro release studies, followed by the in vitro and in vivo hairless mouse skin deposition studies.

View Article and Find Full Text PDF

We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are known to be able to modulate immune responses, possess tissue-protective properties, and exhibit healing capacities with therapeutic potential for various diseases. The ability of MSCs to secrete various cytokines and growth factors provides new insights into autoimmune-diseases such as rheumatoid arthritis (RA). RA is a systemic autoimmune disease that affects the lining of synovial joints, causing stiffness, pain, inflammation, and joint erosion.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a new model called a vascularized tumor spheroid (VTS) to study how cancer tumors develop and spread.
  • This model has both tumor cells and blood vessels, making it more realistic and helping scientists understand how drugs affect tumor growth.
  • Using the VTS, they found that a drug called axitinib can reduce tumor growth by targeting the blood vessels that feed the tumors.
View Article and Find Full Text PDF

Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death.

View Article and Find Full Text PDF

A recently developed human PSC-derived skin organoid model has opened up new avenues for studying skin development, diseases, and regeneration. The current model has limitations since the generated organoids are enclosed, circular aggregates with an inside-out morphology with unintended off-target development of cartilage. Here, we first demonstrated that Wnt signaling activation resulted in larger organoids without off-target cartilage.

View Article and Find Full Text PDF

Glioblastoma is considered one of the most aggressive and dangerous brain tumors. However, treatment of GBM has been still challenged due to blood-brain barrier (BBB). BBB prevents that the chemotherapeutic molecules are extravasated to brain.

View Article and Find Full Text PDF

The development of a scalable and highly reproducible in vitro tumor microenvironment (TME) platform still sheds light on new insights into cancer metastasis mechanisms and anticancer therapeutic strategies. Here, we present an all-in-one injection molded plastic array three-dimensional culture platform (All-in-One-IMPACT) that integrates vascularized tumor spheroids for highly reproducible, high-throughput experimentation. This device allows the formation of self-assembled cell spheroids on a chip by applying the hanging drop method to the cell culture channel.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the progressive neurodegenerative diseases characterized by β-amyloid (Aβ) production and Phosphorylated-Tau (p-Tau) protein in the cerebral cortex. The precise mechanisms of the cause, responsible for disease pathology and progression, are not well understood because there are multiple risk factors associated with the disease. Viral infection is one of the risk factors for AD, and we demonstrated that Zika virus (ZIKV) infection in brain organoids could trigger AD pathological features, including Aβ and p-Tau expression.

View Article and Find Full Text PDF

Background And Objectives: Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids with cerebral organoids.

View Article and Find Full Text PDF

Background And Objectives: Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), a chronic inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied. However, the mechanism underlying their effect needs to be studied continuously.

View Article and Find Full Text PDF

Background: Human umbilical cord blood-derived MSCs (hUCB-MSCs) have been studied in osteoarthritis (OA) and cartilage regeneration. Our previous study demonstrated that hUCB-MSCs combined with cartilage acellular matrix injection (CAM Inj.) represent potential therapeutic agents for structural improvement and anti-inflammatory effects in a rabbit model of OA.

View Article and Find Full Text PDF

Mitochondrial dysfunction is associated with familial Alzheimer's disease (fAD), and the accumulation of damaged mitochondria has been reported as an initial symptom that further contributes to disease progression. In the amyloidogenic pathway, the amyloid precursor protein (APP) is cleaved by β-secretase to generate a C-terminal fragment, which is then cleaved by γ-secretase to produce amyloid-beta (Aβ). The accumulation of Aβ and its detrimental effect on mitochondrial function are well known, yet the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) contributing to this pathology have rarely been reported.

View Article and Find Full Text PDF

In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three-dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection-molded microfluidic chip.

View Article and Find Full Text PDF