Publications by authors named "Kyungnae Baek"

The self-assembly of nanoscale building blocks into complex nanostructures with controlled structural anisotropy can open up new opportunities for realizing active nanomaterials exhibiting spatiotemporal structural transformations. Here, a combination of bottom-up DNA-directed self-assembly and top-down photothermal patterning is adopted to fabricate free-standing nanoparticle films with vertical and lateral heterogeneity. This approach involves the construction of multicomponent plasmonic nanoparticle films by DNA-directed layer-by-layer (LbL) self-assembly, followed by on-demand lateral patterning by the direct photothermal writing method.

View Article and Find Full Text PDF

We report a bimodal imaging method that can spatially resolve and concurrently correlate SERS and background-free Mie scattering signals. By examining two types of nanoparticle assemblies with different types of plasmonic junctions, namely raspberry-like metamolecules (raspberry-MMs) containing intraparticle nanogaps and groups of Au nanocubes forming interparticle gaps, we were able to rapidly screen SERS-active particles among the entire population of nanoparticles. Ratiometric analysis of SERS/Mie scattering revealed distinct behaviors for these intra- and interparticle nanogaps.

View Article and Find Full Text PDF

Structural colors refer to colors produced by the interference of light scattered by judiciously arranged nano- or microscopic structures. In this Forum Article, we discuss the use of Mie resonant scattering in structural colors with dielectric and metal-dielectric hybrid structures to achieve notable figures of merit in pixel size and gamut range. Compared with plasmonic structures, resonant dielectric and hybrid structures are subjected to less loss while providing strong field confinement and large scattering cross sections, making them appealing for realizing vibrant colors at ultrahigh resolutions.

View Article and Find Full Text PDF

Single particle Mie calculations of near micron-sized TiO particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction.

View Article and Find Full Text PDF