We study a system consisting of a few self-propelled particles (SPPs) placed among a crowd of densely packed granular particles that are vertically vibrated in a two-dimensional circular confinement. Our experiments reveal two important findings. First, an SPP exhibits a fractal renewal process within the dense granular medium, which induces a superdiffusive behavior whose diffusion exponent increases with its aspect ratio.
View Article and Find Full Text PDFSeveral functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints.
View Article and Find Full Text PDFMicrofluidics offers promising methods for aligning cells in physiologically relevant configurations to recapitulate human organ functionality. Specifically, microstructures within microfluidic devices facilitate 3D cell culture by guiding hydrogel precursors containing cells. Conventional approaches utilize capillary forces of hydrogel precursors to guide fluid flow into desired areas of high wettability.
View Article and Find Full Text PDFMaterials that transform shapes responding to external stimuli can bring unprecedented innovations to soft matter physics, soft robotics, wearable electronics, and architecture. As most conventional soft actuation technologies induce large deformations only in a preprogrammed manner at designated locations, the material systems capable of agile reversible deformations without prescribed patterns are strongly desired for versatile mechanical morphing systems. Here we report a morphable liquid interface coated with dielectric particles, or a particle raft, which can reversibly change its topography under an external electric field.
View Article and Find Full Text PDFAdoptive cell transfer against solid tumors faces challenges to overcome tumor microenvironment (TME), which plays as a physical barrier and provides immuno-suppressive conditions. Classical cytotoxicity assays are widely used to measure killing ability of the engineered cytotoxic lymphocytes as therapeutics, but the results cannot represent the performance in clinical application due to the absence of the TME. This paper describes a 3D cytotoxicity assay using an injection molded plastic array culture (CACI-IMPACT) device for 3D cytotoxicity assay to assess killing abilities of cytotoxic lymphocytes in 3D microenvironment through a spatiotemporal analysis of the lymphocytes and cancer cells embedded in 3D extra cellular matrix (ECM).
View Article and Find Full Text PDFThe mammalian lymphatic system consists of strategically located lymph nodes (LNs) embedded into a lymphatic vascular network. Mechanisms underlying development of this highly organized system are not fully understood. Using high-resolution imaging, we show that lymphoid tissue inducer (LTi) cells initially transmigrate from veins at LN development sites using gaps in venous mural coverage.
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate.
View Article and Find Full Text PDFLiquid patterning is a quintessential aspect in cell-based screening. While there are a variety of methods to handle microliquids utilizing surface treatments, complex microfluidic systems, and automated dispensing, most of the stated methods are both expensive and difficult to implement. Here, we present a fast multi-scale microliquid-patterning method on an open surface using embossed microstructures without surface modification.
View Article and Find Full Text PDFA novel three dimensional blood brain barrier (BBB) platform was developed by independently supplying different types of media to separate cell types within a single device. One channel (vascular channel, VC) is connected to the inner lumen of the vascular network while the other supplies media to the neural cells (neural channel, NC). Compared to co-cultures supplied with only one type of medium (or 1:1 mixture), best barrier properties and viability were obtained with culturing HUVECs with endothelial growth medium (EGM) and neural cells with neurobasal medium supplemented with fetal bovine serum (NBMFBS) independently.
View Article and Find Full Text PDFChoroidal neovascularization (CNV) in the retinal pigment epithelium (RPE)-choroid complex constituting outer blood retinal barrier (oBRB) is a critical pathological step in various ophthalmic diseases, which results in blindness, such as wet type age-related macula degeneration. Current in vitro experimental models using petri dishes or transwell are unable to study CNV morphogenesis. Here, a unique organotypic eye-on-a-chip model is described that mimics the RPE-choroid complex in vitro.
View Article and Find Full Text PDFThe "Tumor microenvironment" (TME) is a complex, interacting system of the tumor and its surrounding environment. The TME has drawn more attention recently in attempts to overcome current drug resistance and the recurrence of cancer by understanding the cancer and its microenvironment systematically, beyond past reductionist approaches. However, a lack of experimental tools to dissect the intricate interactions has hampered in-depth research into the TME.
View Article and Find Full Text PDF