Realization of all-solid-state batteries combined with metallic Li/Na is still hindered due to the unstable interface between the alkali metal and solid electrolytes, especially for highly promising thiophosphate materials. Artificial and uniform solid-electrolyte interphases (SEIs), serving as thin ion-conducting films, have been considered as a strategy to overcome the issues of such reactive interfaces. Here, we synthesized sulfide-based artificial SEIs (LiS and NaS) on Li and Na by solid/gas reaction between the alkali metal and S vapor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Despite the fact that solid electrolyte interphases (SEIs) on alkali metals (Li and Na) are of great importance in the utilization of batteries with high energy density, growth mechanism of SEIs under an open-circuit potential important for the shelf life and the nature of ionic transport through SEIs are yet poorly understood. In this work, SEIs on Li/Na formed by bringing the electrodes in contact with ether- and carbonate-based electrolyte in symmetric cells were systematically investigated using diverse electrochemical/chemical characterization techniques. Electrochemical impedance spectroscopy (EIS) measurements linked with activation energy determination and cross-section images of Li/Na electrodes measured by ex situ FIB-SEM revealed the liquid/solid composite nature of SEIs, indicating their porosity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes.
View Article and Find Full Text PDFNanohybrid anode materials for Na-ion batteries (NIBs) based on conversion and/or alloying reactions can provide significantly improved energy and power characteristics, while suffering from low Coulombic efficiency and unfavorable voltage properties. An NIB paper-type nanohybrid anode (PNA) based on tin sulfide nanoparticles and acid-treated multiwalled carbon nanotubes is reported. In 1 m NaPF dissolved in diethylene glycol dimethyl ether as an electrolyte, the above PNA shows a high reversible capacity of ≈1200 mAh g and a large voltage plateau corresponding to a capacity of ≈550 mAh g in the low-voltage region of ≈0.
View Article and Find Full Text PDFHere, we demonstrate that graphite can serve as a versatile electrode for various rechargeable battery types by reversibly accommodating solvated alkali ions (such as K, Na, and Li) through co-intercalation in its galleries. The co-intercalation of alkali ions is observed to occur via staging reactions. Notably, their insertion behaviors, including their specific capacity, are remarkably similar regardless of the alkali ion species despite the different solubility limits of K, Na, and Li ions in graphite.
View Article and Find Full Text PDF