Carbon capture and utilization technology has been studied for its practical ability to reduce CO emissions and enable economical chemical production. The main challenge of this technology is that a large amount of thermal energy must be provided to supply high-purity CO and purify the product. Herein, we propose a new concept called reaction swing absorption, which produces synthesis gas (syngas) with net-zero CO emission through direct electrochemical CO reduction in a newly proposed amine solution, triethylamine.
View Article and Find Full Text PDFRapid global COVID-19 pandemic response by mass vaccination is currently limited by the rate of vaccine manufacturing. This study presents a techno-economic feasibility assessment and comparison of three vaccine production platform technologies deployed during the COVID-19 pandemic: (1) adenovirus-vectored (AVV) vaccines, (2) messenger RNA (mRNA) vaccines, and (3) the newer self-amplifying RNA (saRNA) vaccines. Besides assessing the baseline performance of the production process, impact of key design and operational uncertainties on the productivity and cost performance of these vaccine platforms is quantified using variance-based global sensitivity analysis.
View Article and Find Full Text PDFVaccination plays a key role in reducing morbidity and mortality caused by infectious diseases, including the recent COVID-19 pandemic. However, a comprehensive approach that allows the planning of vaccination campaigns and the estimation of the resources required to deliver and administer COVID-19 vaccines is lacking. This work implements a new framework that supports the planning and delivery of vaccination campaigns.
View Article and Find Full Text PDF