Publications by authors named "Kyunghee Yang"

Clinical investigation of emvododstat for the treatment of solid tumors was halted after two patients who were heavily treated with other anticancer therapies experienced drug-induced liver failure. However, preclinical investigations supported that emvododstat at lower doses might be effective in treating acute myeloid leukemia (AML) and against severe acute respiratory syndrome-coronavirus 2 as a dihydroorotate dehydrogenase inhibitor. Therefore, a quantitative systems toxicology model, DILIsym, was used to predict liver safety of the proposed dosing of emvododstat in AML clinical trials.

View Article and Find Full Text PDF

Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring.

View Article and Find Full Text PDF

Inhibition of the canalicular phospholipid floppase multidrug resistance protein 3 (MDR3) has been implicated in cholestatic drug-induced liver injury (DILI), which is clinically characterized by disrupted bile flow and damage to the biliary epithelium. Reduction in phospholipid excretion, as a consequence of MDR3 inhibition, decreases the formation of mixed micelles consisting of bile acids and phospholipids in the bile duct, resulting in a surplus of free bile acids that can damage the bile duct epithelial cells, i.e.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD), representing a clinical spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), is rapidly evolving into a global pandemic. Patients with NAFLD are burdened with high rates of metabolic syndrome-related comorbidities resulting in polypharmacy. Therefore, it is crucial to gain a better understanding of NAFLD-mediated changes in drug disposition and efficacy/toxicity.

View Article and Find Full Text PDF

In 2019, the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. The objective of the analysis herein was to inform this review by assessing whether variability in patient baseline characteristics (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • In 2019, California's OEHHA began reviewing the potential cancer risk of acetaminophen, focusing on long-term rodent studies.
  • Most of the 14 studies showed no increase in tumors, and cases with increased tumor incidence were not relevant to humans due to factors like lack of dose response.
  • Overall, the analysis supports that acetaminophen is not a cancer risk, aligning with assessments from various international health authorities.
View Article and Find Full Text PDF

Purpose: Macrolide antibiotics are commonly prescribed treatments for drug-resistant bacterial infections; however, many macrolides have been shown to cause liver enzyme elevations and one macrolide, telithromycin, has been pulled from the market by its provider due to liver toxicity. This work seeks to assess the mechanisms responsible for the toxicity of macrolide antibiotics.

Methods: Five macrolides were assessed in in vitro systems designed to test for bile acid transporter inhibition, mitochondrial dysfunction, and oxidative stress.

View Article and Find Full Text PDF

Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug-induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays.

View Article and Find Full Text PDF

CKA, a chemokine receptor antagonist intended for treating inflammatory conditions, produced dose-dependent hepatotoxicity in rats but advanced into the clinic where single doses of CKA up to 600 mg appeared safe in humans. Because existing toxicological platforms used during drug development are not perfectly predictive, a quantitative systems toxicology model investigated the hepatotoxic potential of CKA in humans and rats through in vitro assessments of CKA on mitochondrial respiration, oxidative stress, and bile acid transporters. DILIsym predicted that single doses of CKA caused serum ALT >3xULN in a subset of the simulated rat population, while single doses in a simulated human population did not produce serum ALT elevations.

View Article and Find Full Text PDF

The intracellular unbound inhibitor concentration ([I]) is the most relevant concentration for predicting the inhibition of hepatic efflux transporters. However, the intracellular unbound fraction of inhibitor in hepatocytes (f) is not routinely determined. Studies are needed to evaluate the benefit of measuring f and using [I] versus intracellular total inhibitor concentration ([I]) when predicting inhibitory effects.

View Article and Find Full Text PDF

Transporter-mediated alterations in bile acid disposition may have significant toxicological implications. Current methods to predict interactions are limited by the interplay of multiple transporters, absence of protein in the experimental system, and inaccurate estimates of inhibitor concentrations. An integrated approach was developed to predict altered bile acid disposition due to inhibition of multiple transporters using the model bile acid taurocholate (TCA).

View Article and Find Full Text PDF

Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites.

View Article and Find Full Text PDF

The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined.

View Article and Find Full Text PDF

Inhibition of the bile salt export pump (BSEP) has been linked to incidence of drug-induced liver injury (DILI), presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors bosentan and CP-724,714 and the non-hepatotoxic BSEP inhibitor telmisartan in humans in order to explore whether we can predict that hepatotoxic BSEP inhibitors can cause bile acid accumulation to reach toxic levels.

View Article and Find Full Text PDF

Inhibition of bile acid transport by troglitazone (TGZ) and its major metabolite, TGZ sulfate (TS), may lead to hepatocellular accumulation of toxic bile acids; TS accumulation and hepatotoxicity may be associated with impaired TS biliary excretion. This study evaluated the impact of impaired transport of breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2) on the hepatobiliary disposition of generated metabolites, TS and TGZ glucuronide (TG). Sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR(-)) rats in combination with Bcrp knockdown using RNA interference were employed.

View Article and Find Full Text PDF

Breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) are members of the ATP binding cassette (ABC) transporter family located in the canalicular membrane of hepatocytes that mediate biliary excretion of many drugs and endogenous compounds. BCRP and MRP2 have overlapping substrate profiles. Predicting drug disposition in the setting of altered transport function has important clinical significance.

View Article and Find Full Text PDF

Impaired hepatic bile acid export may contribute to development of cholestatic drug-induced liver injury (DILI). The multidrug resistance-associated proteins (MRP) 3 and 4 are postulated to be compensatory hepatic basolateral bile acid efflux transporters when biliary excretion by the bile salt export pump (BSEP) is impaired. BSEP inhibition is a risk factor for cholestatic DILI.

View Article and Find Full Text PDF

Transporters responsible for hepatic uptake and biliary clearance (CLBile) of rosuvastatin (RSV) have been well characterized. However, the contribution of basolateral efflux clearance (CLBL) to hepatic and systemic exposure of RSV is unknown. Additionally, the appropriate design of in vitro hepatocyte efflux experiments to estimate CLBile versus CLBL remains to be established.

View Article and Find Full Text PDF

Drug-induced cholestasis is an important form of acquired liver disease and is associated with significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert toxic responses when they accumulate in hepatocytes. This review focuses on the physiological mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to direct (e.

View Article and Find Full Text PDF

Pregnancy alters the rate and extent of drug metabolism, but little is known about the underlying molecular mechanism. We have found that 17β-estradiol (E2) upregulates expression of the major drug-metabolizing enzyme CYP2B6 in primary human hepatocytes. Results from promoter reporter assays in HepG2 cells revealed that E2 activates constitutive androstane receptor (CAR) and enhances promoter activity of CYP2B6, for which high concentrations of E2 reached during pregnancy were required.

View Article and Find Full Text PDF

Estradiol (E2) is the major endogenous estrogen, and its plasma concentration increases up to 100-fold during pregnancy in humans. Accumulating evidence suggests that an elevated level of E2 may influence hepatic drug metabolism, potentially being responsible for altered drug metabolism during pregnancy. We characterized effects of E2 on expression and activities of cytochrome P450 enzymes (CYPs) in an in vivo system using rats.

View Article and Find Full Text PDF

1-Aminobenzotriazole (ABT) has been widely used in drug development process as an irreversible inhibitor of CYP enzymes. One potential use of ABT is to potentiate pharmacological effects of rapidly-metabolized drugs on CYP expression by inhibiting their metabolism; however, ABT's own effects on CYP expression have been unknown. In this study, we show that ABT up-regulates expression of CYP2B6 and CYP3A4 potentially by activating nuclear receptor CAR.

View Article and Find Full Text PDF

Oral clearance of lamotrigine, an antiepileptic drug commonly used in pregnant women, is increased in pregnancy by unknown mechanisms. In this study, we show that 17beta-estradiol (E(2)) up-regulates expression of UDP glucuronosyltransferase (UGT) 1A4, the major enzyme responsible for elimination of lamotrigine. Endogenous mRNA expression levels of UGT1A4 in estrogen receptor (ER) alpha-negative HepG2 cells were induced 2.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to identify the effects of meridian massage on menopausal symptoms and Shin-Hur in middle-aged menopausal women.

Method: The research design was a nonequivalent control group pre-post experimental design. The subjects of the study were middle-aged women who had had no menstruation in the last 12 months after the last menstrual bleeding.

View Article and Find Full Text PDF

Low-income Korean community women were assessed for factors relating to decreased bone mineral density (BMD) and fractures in order to determine appropriate health promotion programs. Factors associated with decreased BMD were menopause (OR=3.30, p<0.

View Article and Find Full Text PDF