Publications by authors named "Kyunghee Chang"

Life-long hematopoietic demands are met by a pool of hematopoietic stem cells (HSC) with self-renewal and multipotential differentiation ability. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment control HSC activity. Cell-to-cell communication through connexin (Cx) containing gap junctions (GJs) allows pluricellular coordination and synchronization through transfer of small molecules with messenger activity.

View Article and Find Full Text PDF

The Rho family of guanosine triphosphatases (GTPases) is composed of members of the Ras superfamily of proteins. They are GTP-bound molecules with a modest intrinsic GTPase activity that can be accelerated upon activation/localization of specialized guanine nucleotide exchange factors. Members of this family act as molecular switches and are required for coordinated cytoskeletal rearrangements that are crucial in a set of specialized functions of mammalian stem cells.

View Article and Find Full Text PDF

Purpose: Modulators of angiogenesis typically work in an orchestrated manner. The authors examined the interaction between insulinlike growth factor (IGF)-1, vascular endothelial growth factor (VEGF), and stromal derived factor (SDF)-1 in vivo and in vitro using angiogenesis models.

Methods: The angiogenic effect of SDF-1, alone or in combination with IGF-1 and VEGF, was assessed in human lung microvascular endothelial cells using capillary tube formation and thymidine incorporation.

View Article and Find Full Text PDF

Precise localization of exogenously delivered stem cells is critical to our understanding of their reparative response. Our current inability to determine the exact location of small numbers of cells may hinder optimal development of these cells for clinical use. We describe a method using magnetic resonance imaging to track and localize small numbers of stem cells following transplantation.

View Article and Find Full Text PDF

We asked whether the hypoxia-regulated factor, insulin-like growth factor binding protein-3 (IGFBP3), could modulate stem cell factor receptor (c-kit+), stem cell antigen-1 (sca-1+), hematopoietic stem cell (HSC), or CD34+ endothelial precursor cell (EPC) function. Exposure of CD34+ EPCs to IGFBP3 resulted in rapid differentiation into endothelial cells and dose-dependent increases in cell migration and capillary tube formation. IGFBP3-expressing plasmid was injected into the vitreous of neonatal mice undergoing the oxygen-induced retinopathy (OIR) model.

View Article and Find Full Text PDF

Endothelial precursor cells (EPCs) play a key role in vascular repair and maintenance, and their function is impeded in diabetes. We previously demonstrated that EPCs isolated from diabetic patients have a profound inability to migrate in vitro. We asked whether EPCs from normal individuals are better able to repopulate degenerate (acellular) retinal capillaries in chronic (diabetes) and acute (ischemia/reperfusion [I/R] injury and neonatal oxygen-induced retinopathy [OIR]) animal models of ocular vascular damage.

View Article and Find Full Text PDF
Article Synopsis
  • SDF-1 is a key chemokine that helps recruit endothelial progenitor cells (EPCs) to areas lacking blood supply, promoting new blood vessel formation.
  • Diabetic patients demonstrate a significant migration defect in their CD34+ EPCs towards SDF-1, which may relate to the enzyme CD26 affecting SDF-1's activity.
  • Treatment with a nitric oxide donor restores the migration and flexibility of these diabetic EPCs, indicating a potential therapeutic approach to enhance vascular repair in diabetic patients.
View Article and Find Full Text PDF

To evaluate the embryotrophic role of three hexoses (glucose, fructose, and galactose), bovine embryos derived from somatic cell nuclear transfer (SCNT) or in vitro-fertilization (IVF) were cultured in a modified synthetic oviductal fluid (mSOF), which contained either glucose (1.5 or 5.6 mM), fructose (1.

View Article and Find Full Text PDF