Publications by authors named "Kyung-Min Yang"

Background: Multinucleation is a hallmark of osteoclast formation and has a unique ability to resorb bone matrix. During osteoclast differentiation, the cytoskeleton reorganization results in the generation of actin belts and eventual bone resorption. Tetraspanins are involved in adhesion, migration and fusion in various cells.

View Article and Find Full Text PDF

Background: This study aimed to investigate how aging alters the homeostasis of the colonic intestinal epithelium and regeneration after tissue injury using organoid models and to identify its underlying molecular mechanism.

Methods: To investigate aging-related changes in the colonic intestinal epithelium, we conducted organoid cultures from old (older than 80 weeks) and young (6-10 weeks) mice and compared the number and size of organoids at day 5 of passage 0 and the growth rate of organoids between the two groups.

Results: The number and size of organoids from old mice was significantly lower than that from young mice (p < 0.

View Article and Find Full Text PDF

The signaling pathways governing acetaminophen (APAP)-induced liver injury have been extensively studied. However, little is known about the ubiquitin-modifying enzymes needed for the regulation of APAP-induced liver injury. Here, we examined whether the Pellino3 protein, which has E3 ligase activity, is needed for APAP-induced liver injury and subsequently explored its molecular mechanism.

View Article and Find Full Text PDF

(1) Background: Desmoid tumors have a relatively high local failure rate after primary treatment using surgery and/or radiotherapy. Moreover, desmoid tumors recur at the primary site for many patients. An effective therapeutic strategy for the desmoid tumor is needed to maintain quality of life and prolong survival.

View Article and Find Full Text PDF

Although accumulating evidence indicates that alternative splicing is aberrantly altered in many cancers, the functional mechanism remains to be elucidated. Here, we show that epithelial and mesenchymal isoform switches of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) regulated by epithelial splicing regulatory protein 1 (ESRP1) correlate with metastatic potential of gastric cancer cells. We found that expression of the splicing variants of LRRFIP2 was closely correlated with that of ESRP1.

View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stromal cells (MSCs) differentiate into cartilage and bone under the control of key signaling pathways, with protein kinases playing a significant role in this process.
  • Mast4 acts as a mediator in TGF-β and Wnt signaling, influencing MSC differentiation: TGF-β1 suppresses Mast4 to enhance chondrogenesis, while Wnt signaling promotes osteogenesis by stabilizing Mast4.
  • Mice lacking Mast4 exhibit excessive cartilage production but also show signs of osteoporosis, indicating that Mast4 is crucial in dictating whether MSCs develop into cartilage or bone.
View Article and Find Full Text PDF

Purpose: A multidisciplinary approach is essential for trauma patients' treatment, particularly for cases with open lower extremity fractures, which are considered major traumas requiring a comprehensive approach. Recently, the social demand for severe-trauma centers has increased. This study analyzed the clinical impact of establishing a trauma center for the treatment of open lower extremity fractures.

View Article and Find Full Text PDF

Necrotizing fasciitis is a type of soft tissue infection that destroys subcutaneous tissue. It is particularly dangerous for patients with chronic diseases and those who are bedridden while recuperating. Although necrotizing fasciitis is often caused by trauma or postoperative infection, in rare cases, it can be attributed to pressure injury (PI).

View Article and Find Full Text PDF

Despite favorable responses to initial chemotherapy, drug resistance is a major cause limiting chemotherapeutic efficacy in many advanced cancers. However, mechanisms that drive drug-specific resistance in chemotherapy for patients with advanced cancers are still unclear. Here, we report a unique role of death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) associated with paclitaxel resistance in cervical cancer cells.

View Article and Find Full Text PDF

Few studies have examined the role of BAG2 in malignancies. We investigated the prognostic value of BAG2-expression in cancer-associated fibroblasts (CAFs) and tumor cells in predicting metastasis-free survival in patients with breast cancer. Tissue-microarray was constructed using human breast cancer tissues obtained by surgical resection between 1992 and 2015.

View Article and Find Full Text PDF

The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types.

View Article and Find Full Text PDF

Although tetraarsenic hexoxide is known to exert an anti-tumor effect by inducing apoptosis in various cancer cells, its effect on other forms of regulated cell death remains unclear. Here, we show that tetraarsenic hexoxide induces the pyroptotic cell death through activation of mitochondrial reactive oxygen species (ROS)-mediated caspase-3/gasdermin E (GSDME) pathway, thereby suppressing tumor growth and metastasis of triple-negative breast cancer (TNBC) cells. Interestingly, tetraarsenic hexoxide-treated TNBC cells exhibited specific pyroptotic characteristics, including cell swelling, balloon-like bubbling, and LDH releases through pore formation in the plasma membrane, eventually suppressing tumor formation and lung metastasis of TNBC cells.

View Article and Find Full Text PDF

Purpose: Acellular dermal matrix (ADM) supports tissue expanders or implants in implant-based breast reconstruction. The characteristics of ADM tissue are defined by the manufacturing procedure, such as decellularization, preservation, and sterilization, and are directly related to clinical outcomes. This study aimed to compare the properties of a new pre-hydrated-ADM (H-ADM-low) obtained using a decellularization reagent reduction process with a low concentration of detergent with those of radiation-sterilized H-ADM and freeze-dried ADM (FD-ADM).

View Article and Find Full Text PDF

Cisplatin resistance remains a significant obstacle for improving the clinical outcome of ovarian cancer patients. Recent studies have demonstrated that cisplatin is an important inducer of intracellullar reactive oxygen species (ROS), triggering cancer cell death. Sirtuin 2 (SIRT2), a member of class III NAD dependent histone deacetylases (HDACs), has been reported to be involved in regulating cancer hallmarks including drug response.

View Article and Find Full Text PDF

Although advanced lipidomics technology facilitates quantitation of intracellular lipid components, little is known about the regulation of lipid metabolism in cancer cells. Here, we show that disruption of the Gdpd3 gene encoding a lysophospholipase D enzyme significantly decreased self-renewal capacity in murine chronic myelogenous leukaemia (CML) stem cells in vivo. Sophisticated lipidomics analyses revealed that Gdpd3 deficiency reduced levels of certain lysophosphatidic acids (LPAs) and lipid mediators in CML cells.

View Article and Find Full Text PDF

The adaptor protein TNF receptor-associated factor 6 (TRAF6) is a key mediator in inflammation. However, the molecular mechanisms controlling its activity and stability in cancer progression remain unclear. Here we show that death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) inhibits the proinflammatory signaling pathway by targeting TRAF6 for degradation, thereby suppressing inflammatory signaling-mediated tumor growth and metastasis in advanced cervical cancer cells.

View Article and Find Full Text PDF

The development of triple-negative breast cancer (TNBC) negatively impacts both quality of life and survival in a high percentage of patients. Here, we show that RING finger protein 208 (RNF208) decreases the stability of soluble Vimentin protein through a polyubiquitin-mediated proteasomal degradation pathway, thereby suppressing metastasis of TNBC cells. RNF208 was significantly lower in TNBC than the luminal type, and low expression of RNF208 was strongly associated with poor clinical outcomes.

View Article and Find Full Text PDF

Background: A20 protein has ubiquitin-editing activities and acts as a key regulator of inflammation and immunity. Previously, our group showed that A20 promotes tumor metastasis through multi-monoubiquitylation of SNAIL1 in basal-like breast cancer. Here, we investigated survival outcomes in patients with breast cancer according to A20 expression.

View Article and Find Full Text PDF
Article Synopsis
  • Smad3 linker phosphorylation is critical in cancer, where mutations in these sites can reduce tumor growth but increase lung metastasis in breast cancer.
  • * High-throughput RNA-Sequencing was conducted on prostate cancer cells with a modified Smad3 to identify genes influenced by this mutation.
  • * The study found that the modified Smad3 enhanced cell movement and invasiveness, linking this to increased expression of specific genes associated with these traits in pancreatic and prostate cancer cells.*
View Article and Find Full Text PDF

Chromosomal rearrangements that facilitate tumor formation and progression through activation of oncogenic tyrosine kinases are frequently observed in cancer. The ETV6-NTRK3 (EN) fusion has been implicated in various cancers, including infantile fibrosarcoma, secretory breast carcinoma, and acute myeloblastic leukemia, and has exhibited in vivo and in vitro transforming ability. In the present study, we analyzed transcriptome alterations using DNA microarray and RNA-Seq in EN-transduced NIH3T3 fibroblasts to identify the mechanisms that are involved in EN-mediated tumorigenesis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2), which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region.

View Article and Find Full Text PDF

Smad3 linker phosphorylation is a candidate target for several kinases that play important roles in cancer cell initiation, proliferation and progression. Also, Smad3 is an essential intracellular mediator of TGF-β1-induced transcriptional responses during carcinogenesis. Therefore, it is highly advantageous to identify and develop inhibitors targeting Smad3 linker phosphorylation for the treatment of cancers.

View Article and Find Full Text PDF

Although the ubiquitin-editing enzyme A20 is a key player in inflammation and autoimmunity, its role in cancer metastasis remains unknown. Here we show that A20 monoubiquitylates Snail1 at three lysine residues and thereby promotes metastasis of aggressive basal-like breast cancers. A20 is significantly upregulated in human basal-like breast cancers and its expression level is inversely correlated with metastasis-free patient survival.

View Article and Find Full Text PDF

DRAK2 is a serine/threonine kinase belonging to the death-associated protein kinase (DAPK) family and has emerged as a promising drug target for the treatment of autoimmune diseases and cancers. To identify small molecule inhibitors for DRAK2, we performed a high throughput screening campaign using in-house chemical library and identified indirubin-3'-monoximes as novel class of DRAK2 inhibitors. Among the compounds tested, compound 16 exhibited the most potent inhibitory activity against DRAK2 (IC50=0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: