Background: We aimed to develop a consensus on the need for and priorities of exercise to treat preexisting sarcopenia with hemiplegic stroke.
Methods: A modified three-round Delphi study was conducted. The panelists responded to the questionnaire on a 7-point Likert scale.
There are currently a multitude of quantification techniques that have been developed for use with single-case designs. As a result, choosing an appropriate quantification technique can be overwhelming and it can be difficult for researchers to properly describe and justify their use of quantification techniques. However, providing clear descriptions and justifications is important for enhancing the credibility of single-case research, and allowing others to evaluate the appropriateness of the quantification technique used.
View Article and Find Full Text PDFThe Voice Handicap Index (VHI) is a patient-centered evaluation tool specifically designed for assessing voice-related quality of life. Although the VHI has been extensively used in patients with voice disorders, its applicability in stroke patients has not been fully established. This prospective cross-sectional study aimed to investigate the feasibility of using the VHI questionnaire in identifying stroke patients with voice problems.
View Article and Find Full Text PDFTerahertz (THz) imaging techniques are attractive for a wide range of applications, such as non-destructive testing, biological sensing, and security imaging. We investigate practical issues in THz imaging systems based on a solid immersion lens (SIL). The system stability in terms of longitudinal misalignment of the SIL is experimentally verified by showing that the diffraction-limited sub-wavelength beam size (0.
View Article and Find Full Text PDFWe modified our 910-m long path THz system to increase the signal-to-noise ratio (S/N) with a nanostructure plasmonic THz transmitter (Tx) chip and a seven-mirror array reflector with 1 m diameter. When the THz pulse propagates the 910-m distance in the atmosphere, the S/N is up to 1170:1, which made the THz pulse measurable at a high water vapor density (WVD) of up to 25.2 g/m.
View Article and Find Full Text PDFA terahertz continuous wave system is demonstrated for thickness measurement using Gouy phase shift interferometry without frequency sweep. One arm of the interferometer utilizes a collimated wave as a reference, and the other arm applies a focused beam for sample investigation. When the optical path difference (OPD) of the arms is zero, a destructive interference pattern is produced.
View Article and Find Full Text PDFPhotonic devices that exhibit all-optically reconfigurable polarization dependence with a large dynamic range would be highly attractive for active polarization control. Here, we report that strongly polarization-selective nonlinear optomechanical interactions emerge in subwavelength waveguides. By using full-vectorial finite element analysis, we find, at certain core ellipticities (or aspect ratios), that the forward simulated light scattering mediated by a specific acoustic resonance mode is eliminated for one polarization mode.
View Article and Find Full Text PDFRectifiers have been used to detect electromagnetic waves with very low photon energies. In these rectifying devices, different methods have been utilized, such as adjusting the bandgap and the doping profile, or utilizing the contact potential of the metal-semiconductor junction to produce current flow depending on the direction of the electric field. In this paper, it is shown that the asymmetric application of nano-electrodes to a metal-semiconductor-metal (MSM) structure can produce such rectification characteristics, and a terahertz (THz) wave detector based on the nano-MSM structure is proposed.
View Article and Find Full Text PDFWe demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.
View Article and Find Full Text PDFAn electrically controllable square-loop metamaterial based on vanadium dioxide (VO2) thin film was proposed in the terahertz frequency regime. The square-loop shaped metamaterial was adopted to perform roles not only as a resonator but also as a micro-heater for the electrical control of the VO2. A dual-resonant square-loop structure was designed to realize band-pass characteristics in the desired frequency band.
View Article and Find Full Text PDFPhotoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well.
View Article and Find Full Text PDFAn active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.
View Article and Find Full Text PDFIn this study, inspired by the frequency-modulated continuous-wave (FMCW) method, an operation scheme of continuous-wave (CW) terahertz (THz) homodyne system is proposed and evaluated. For this purpose, we utilized the fast and stable wavelength tuning characteristics of a dual-mode laser (DML) as a beating source. Using the frequency-modulated THz waves generated by DML, a cost-effective and robust operation of CW THz system to be applicable to the measurements of thickness or refractive index of a sample is demonstrated.
View Article and Find Full Text PDFWe demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm².
View Article and Find Full Text PDFTerahertz (THz) waves have been exploited for the non-contact measurements of thickness and refractive index, which has enormous industrial applicability. In this work, we demonstrate a 1.3-μm dual-mode laser (DML)-based continuous-wave THz system for the real-time measurement of a commercial indium-tin-oxide (ITO)-coated glass.
View Article and Find Full Text PDFA novel buried photomixer for integrated photonic terahertz devices is proposed. The active region of the mesa-structure InGaAs photomixer is buried in an InP layer grown by metalorganic chemical vapor deposition (MOCVD) to improve heat dissipation, which is an important problem for terahertz photomixers. The proposed photomixer shows good thermal properties compared to a conventional planar-type photomixer.
View Article and Find Full Text PDFWe present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz.
View Article and Find Full Text PDFWe report a high-speed (~2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs.
View Article and Find Full Text PDFFood quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB) known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples.
View Article and Find Full Text PDFWe propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB.
View Article and Find Full Text PDFA widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode.
View Article and Find Full Text PDFPurpose: This study evaluated the incidence of a venous thromboembolism (VTE) after total knee arthroplasty (TKA) using multidetector row computed tomography-indirect venography (MDCT-indirect venography) and assessed the efficacy of anti-coagulation therapy.
Materials And Methods: We enrolled 118 patients with 126 cases of TKA. The average age of the patients was 68.
Background: Femoral fractures in adolescents usually need operative treatment, but the optimal method is unclear. The purpose of this study is to compare intramedullary nailing (IN) and submuscular plating (SP) in adolescent femoral fractures.
Materials And Methods: We performed the prospective, comparison study of IN and SP in adolescent femoral shaft fractures at a mean age of 13.
We propose a rapidly frequency-swept optical beat source for continuous wave (CW) THz generation using a wavelength swept laser and a fixed distributed feedback (DFB) laser. The range of the sweeping bandwidth is about 17.3 nm (2.
View Article and Find Full Text PDF