Publications by authors named "Kyung-Eui Ro"

While analyzing DNA barcodes of all the Korean and some East Asian tephritid species in conjunction with the barcode sequences available from BOLD Systems (www.boldsystems.org), the large and taxonomically enigmatic genus was recovered as a monophyletic clade, together with the genera and , which are here synonymized for that reason.

View Article and Find Full Text PDF

The phylogeny of the family Tephritidae (Diptera: Tephritidae) was reconstructed from mitochondrial 12S, 16S, and COII gene fragments using 87 species, including 79 tephritid and 8 outgroup species. Minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) A sister group relationship between Ortalotrypeta and Tachinisca, and their basal phylogenetic position within Tephritidae; (2) a sister group relationship between the tribe Acanthonevrini and Phytalmiini; (3) monophyly of Plioreocepta, Taomyia and an undescribed new genus, and their sister group relationship with the subfamily Tephritinae; (4) a possible sister group relationship of Cephalophysa and Adramini; and (5) reconfirmation of monophyly for Trypetini, Carpomyini, Tephritinae, and Dacinae. The combination of 12S, 16S, and COII data enabled resolution of phylogenetic relationships among the higher taxa of Tephritidae.

View Article and Find Full Text PDF

The phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) was reconstructed from mitochondrial 16S ribosomal RNA gene sequences using 53 species representing 11 currently recognized tribes of the Tephritinae and 10 outgroup species. The minimum evolution and Bayesian trees suggested the following phylogenetic relationships: (1) monophyly of the Tephritinae was strongly supported; (2) a sister group relationship between the Tephritinae and Plioreocepta was supported by the Bayesian tree; (3) the tribes Tephrellini, Myopitini, and Terelliini (excluding Neaspilota) were supported as monophyletic groups; (4) the non-monophyletic nature of the tribes Dithrycini, Eutretini, Noeetini, Tephritini, Cecidocharini, and Xyphosiini; and (5) recognition of 10 putative tribal groups, most of which were supported strongly by the statistical tests of the interior branches. Our results, therefore, convincingly suggest that an extensive rearrangement of the tribal classification of the Tephritinae is necessary.

View Article and Find Full Text PDF

The phylogeny of the superfamily Tephritoidea (Diptera: Muscomorpha) was reconstructed from three mitochondrial gene fragments (12S, 16S, and COII) using 49 species representing 19 tephritoid and related families. Phylogenetic signal present in different gene fragments as well as combinations of gene fragments was examined using the interior branch and bootstrap test values from minimum evolution method. The minimum evolution, maximum likelihood, and maximum parsimony trees based on a combined dataset of all three gene fragments provided insight concerning the following phylogenetic relationships: (1) two monophyletic groups (Group-1 and -2) within the superfamily Tephritoidea were clearly recognized; they are compatible with Willi Hennig's Pallopteroidea and Otitoidea that are not used in the contemporary higher classification; (2) the non-monophyletic nature of the family Platystomatidae; and (3) a sister group relationship of Conopidae to Tephritoidea was not supported; instead, our result suggested that Conopidae and Diopsidae might be the basal most groups among the schizophoran families included in this study.

View Article and Find Full Text PDF