Publications by authors named "Kyung-Chae Jeong"

Background: Capmatinib, a potent and selective mesenchymalepithelial transition factor (MET) inhibitor, is an effective treatment option for non-small cell lung cancer (NSCLC) patients with exon 14 skipping mutations or gene amplification. However, the mechanisms that confer resistance to capmatinib remain elusive. Here, we present a case of primary resistance to capmatinib in a -amplified NSCLC patient which was conferred by concurrent amplification.

View Article and Find Full Text PDF

Acquisition of acquired chemoresistance during treatment cycles in urothelial carcinoma of the bladder (UCB) is the major cause of death through enhancing the risk of cancer progression and metastasis. Elevated glucose flux through the abnormal upregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) controls key signaling and metabolic pathways regulating diverse cancer cell phenotypes. This study showed that OGT expression levels in two human UCB cell models with acquired resistance to gemcitabine and paclitaxel were significantly upregulated compared with those in parental cells.

View Article and Find Full Text PDF

Background: Docetaxel is the preferred chemotherapeutic agent for hormone-refractory prostate cancer (PC) patients. However, patients eventually develop docetaxel resistance, and no effective treatment options are available for them.

Objective: We aimed to establish docetaxel resistance in castration-resistant prostate cancer (CRPC) cell lines (DU145/TXR, PC-3/TXR, and CWR22/TXR) and characterized transcriptional changes upon acquiring resistance to the docetaxel.

View Article and Find Full Text PDF

We compared progression-free survival (PFS) and overall survival (OS) among 292 metastatic renal cell carcinoma (mRCC) patients either undergoing nephrectomy (Nx, 61.6%) or not (non-Nx, 38.4%), stratified according to the MSKCC and Heng risk models, treated with either immunotherapy (IT, 45.

View Article and Find Full Text PDF

Herein, we describe a novel approach for the practical synthesis of tetrasubstituted thiophenes . The developed method was particularly used for the facile preparation of thienyl heterocycles . The mechanism for this reaction is based on the formation of a sulfur ylide-like intermediate.

View Article and Find Full Text PDF

In a previous report, 3-aminopropyl functionalized magnesium phyllosilicate (aminoclay) improved adenovirus transduction efficiency by shielding the negative surface charges of adenovirus particles. The present study analyzed the physicochemical characterization of the electrostatic complex of adenoviruses with aminoclay and explored whether it could be utilized for enhancing tumor suppressive activity in the bladder. As a result of aminoclay-adenovirus nanobiohybridization, its transduction was enhanced in a dose-dependent manner, increasing transgene expression in bladder cancer cells and in in vivo animal models.

View Article and Find Full Text PDF

Objective: Sodium bicarbonate has been reported to maximize the efficacy of intravesical instillation of mitomycin-C (IVI-MMC) therapy by urine alkalinization in non-muscle-invasive bladder cancer (NMIBC). This study aimed to analyze the changes in MMC concentration according to urinary pH and evaluate the efficacy of sodium bicarbonate to maintain the concentration of active form of MMC during IVI-MMC.

Methods: We prospectively enrolled 26 patients with NMIBC after transurethral resection of bladder tumor.

View Article and Find Full Text PDF

To properly evaluate the biological effects of immunotherapy, it is critical to utilize a model of cancer in immune-competent mice. Currently, MBT-2 is the most common murine bladder cancer cell line used in orthotopic bladder cancer models, even though this cell type often has an inappropriate genetic mutation landscape. In these models, after tumors are detected with imaging, the mouse usually dies within two to three weeks due to post-renal azotemia caused by the rapidly growing mass.

View Article and Find Full Text PDF

Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC.

View Article and Find Full Text PDF

The proto-oncogene c-Myc has been implicated in a variety of cellular processes, such as proliferation, differentiation and apoptosis. Several c-Myc targets have been studied; however, selective regulation of c-Myc is not easy in cancer cells. Herein, we attempt to identify chemical compounds that induce cell death in c-Myc-overexpressing cells (STF-cMyc and STF-Control) by conducting MTS assays on approximately 4000 chemical compounds.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found specific gene subpathways linked to resistance in breast cancer cells treated with trastuzumab, a common HER2-targeting therapy.
  • They identified 32 genes that are consistently overexpressed in trastuzumab-resistant cells, with key changes observed in both resistant and sensitive cell lines.
  • The study suggests that genes like ATF4 and RAD51 could serve as biomarkers for drug resistance, highlighting a new methodology for discovering potential treatment targets in breast cancer.
View Article and Find Full Text PDF

Survivin is a member of the inhibitors of apoptosis protein family. Here, we examined survivin expression and confirmed abundant survivin expression in bladder cancer cells. This expression pattern indicated that the transcriptional regulatory elements that control survivin expression could be utilized to discriminate cancer from normal cells.

View Article and Find Full Text PDF

Intravesical instillation of chemotherapeutic agents is a well-established treatment strategy to decrease recurrence following transurethral resection in non-muscle invasive bladder cancer. Gemcitabine is a recently developed treatment option. However, the curative effects of gemcitabine are far from satisfactory due to de novo or acquired drug resistance.

View Article and Find Full Text PDF

Purpose: c-MYC is a promising target for cancer therapy but its use is restricted by unwanted, devastating side effects. We explored whether intravesical instillation of the c-MYC inhibitor KSI-3716 could suppress tumor growth in murine orthotopic bladder xenografts.

Materials And Methods: The small molecule KSI-3716, which blocks c-MYC/MAX binding to target gene promoters, was used as an intravesical chemotherapy agent.

View Article and Find Full Text PDF

Pyrococcus furiosus PF2050 is an uncharacterized putative protein that contains two DUF2666 domains. Functional and structural studies of PF2050 have not previously been performed. In this study, we determined the crystal structure of PF2050.

View Article and Find Full Text PDF

Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all α-helical structure.

View Article and Find Full Text PDF

Background: A major problem with the use of current chemotherapy regimens for several cancers, including breast cancer, is development of intrinsic or acquired drug resistance, which results in disease recurrence and metastasis. However, the mechanisms underlying this drug resistance are unknown. To study the molecular mechanisms underlying the invasive and metastatic activities of drug-resistant cancer cells, we generated a doxorubicin-resistant MCF-7 breast cancer cell line (MCF-7/DOX).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the potential of targeting the cellular response to DNA damage for cancer therapy, using the phosphorylated histone H2AX (γH2AX) as a marker for DNA damage.
  • Researchers developed an automated system to measure γH2AX levels by analyzing nuclear foci associated with DNA damage, which showed a strong correlation with various DNA damage-inducing agents.
  • The system was successful in screening a chemical library, identifying compounds that affect early signaling in the DNA damage response and subsequent repair processes, indicating its promise for discovering new cancer treatments.
View Article and Find Full Text PDF

c-Myc plays a decisive role in the proliferation of HL-60 promyelocytic leukemia cells. In the present study, we demonstrated that an inhibitor of c-Myc/Max/DNA complex formation has a high potentiality as a suppressor of c-Myc-involved cell signaling. We prepared recombinant c-Myc and Max proteins encompassing the human-origin DNA binding and dimerization domains, and tested a chemical library of 6480 small molecules for their inhibitory effect on the in vitro formation of the c-Myc/Max/DNA complex as well as their influence on DMSO-differentiated HL-60 cells.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a calcium-dependent multifunctional protein associated with various human diseases. We determined the crystal structure of human TG2 in complex with adenosine triphosphate (ATP). The ATP molecule binds to the previously identified guanosine diphosphate (GDP) binding pocket but has different hydrogen bonds and ion interaction with protein.

View Article and Find Full Text PDF

Purpose: Although many efforts on revealing mechanism of the constitutive activation of NF-κB in cancer cells contributed to understanding canonical pathways, largely it remains to be determined for therapeutic approaches. Recently, we found that increased expression of transglutaminase 2 (TGase 2) appears to be responsible for constitutive activation of NF-κB in certain types of cancer cells. In previous studies, we demonstrated that TGase 2 inhibition markedly increases anti-cancer drug sensitivity in drug resistance cancer cells.

View Article and Find Full Text PDF

Activation of NF-kappaB is reported in breast cancers. NF-kappaB inhibition in breast cancer cell lines results in an increase in apoptosis. However, the reason for continuous activation of this transcription factor in breast cancer is currently unclear.

View Article and Find Full Text PDF

Post-transcriptional regulation of mRNA stability by Hu proteins is an important mechanism for tumorigenesis. We focused on the molecular interactions between the HuC protein and AU-rich elements (AREs) to find chemical inhibitors of RNA-protein interactions using RNA electrophoretic mobility shift assay with non-radioactive probes. Screening of 52 natural compounds identified 14 candidate compounds that displayed potent inhibitory activity.

View Article and Find Full Text PDF

Aberrant increases of transglutaminase 2 (TGase 2) in tumors contribute to drug resistance. The role of TGase 2 in cancer pathogenesis was unknown until we showed that TGase 2 activates NF-kappaB in the absence of kinase-dependent phosphorylation. It appears that increased expression of TGase 2 is responsible for the constitutive activation of NF-kappaB in cancer cells.

View Article and Find Full Text PDF