Background And Purpose: The interaction between language and other cognitive networks in patients harboring brain tumors is poorly understood. We studied the modification of the cognitive control network (CCN) induced by brain tumors and its participation in language reorganization. We hypothesized that patients with brain tumors and reorganized language would show modification of the CCN compared to patients who remain left dominant.
View Article and Find Full Text PDFConventional MRI is currently the preferred imaging technique for detection and evaluation of malignant spinal lesions. However, this technique is limited in its ability to assess tumor viability. Unlike conventional MRI, dynamic contrast-enhanced (DCE) MRI provides insight into the physiologic and hemodynamic characteristics of malignant spinal tumors and has been utilized in different types of spinal diseases.
View Article and Find Full Text PDFDistinguishing treatment-induced imaging changes from progressive disease has important implications for avoiding inappropriate discontinuation of a treatment. Our goal in this study is to evaluate the utility of dynamic contrast-enhanced (DCE) perfusion MRI as a biomarker for the early detection of progression. We hypothesize that DCE-MRI may have the potential as an early predictor for the progression of disease in GBM patients when compared to the current standard of conventional MRI.
View Article and Find Full Text PDFBackground And Purpose: The aim of this study was to determine the diagnostic value of fractional plasma volume derived from dynamic contrast-enhanced perfusion MR imaging versus ADC, obtained from DWI in differentiating between grade 2 (low-grade) and grade 3 (high-grade) intracranial ependymomas.
Materials And Methods: A hospital database was created for the period from January 2013 through June 2022, including patients with histologically-proved ependymoma diagnosis with available dynamic contrast-enhanced MR imaging. Both dynamic contrast-enhanced perfusion and DWI were performed on each patient using 1.
Purpose: 18 F-FDG PET captures the relationship between glucose metabolism and synaptic activity, allowing for modeling brain function through metabolic connectivity. We investigated tumor-induced modifications of brain metabolic connectivity.
Patients And Methods: Forty-three patients with left hemispheric tumors and 18 F-FDG PET/MRI were retrospectively recruited.
Significant advancements in cancer treatment have led to improved survival rates for patients, particularly in the context of spinal metastases. However, early detection and monitoring of treatment response remain crucial for optimizing patient outcomes. Although conventional imaging methods such as bone scan, PET, MR imaging, and computed tomography are commonly used for diagnosing and monitoring treatment, they present challenges in differential diagnoses and treatment response monitoring.
View Article and Find Full Text PDFBackground And Purpose: Current imaging techniques have difficulty differentiating treatment success and failure in spinal metastases undergoing radiation therapy. This study investigated the correlation between changes in dynamic contrast-enhanced MR imaging perfusion parameters and clinical outcomes following radiation therapy for spinal metastases. We hypothesized that perfusion parameters will outperform traditional size measurements in discriminating treatment success and failure.
View Article and Find Full Text PDFSince its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language.
View Article and Find Full Text PDFBrain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance.
View Article and Find Full Text PDFRecent therapeutic advances have led to increased survival times for patients with metastatic disease. Key to survival is early diagnosis and subsequent treatment as well as early detection of treatment failure allowing for therapy modifications. Conventional MR imaging techniques of the spine can be at times suboptimal for identifying viable tumor, as structural changes and imaging characteristics may not differ pretreatment and posttreatment.
View Article and Find Full Text PDFAim: Because the tongue is a midline structure, studies on the neural correlates of lateralized tongue function are challenging and remain limited. Patients with tongue cancer who undergo unilateral partial glossectomy may be a unique cohort to study tongue-associated cortical activation, particularly regarding brain hemispheric lateralization. This longitudinal functional magnetic resonance imaging (fMRI) study investigated cortical activation changes for three tongue tasks before and after left-sided partial glossectomy in patients with squamous cell carcinoma of the tongue.
View Article and Find Full Text PDFObjectives: Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
View Article and Find Full Text PDFBackground And Purpose: Resting-state functional magnetic resonance imaging (rsfMRI) has been proposed as an alternative to task-based fMRI including clinical situations such as preoperative brain tumor planning, due to advantages including ease of performance and time savings. However, one of its drawbacks is the limited ability to accurately lateralize language function.
Methods: Using the rsfMRI data of healthy controls, we carried out a power spectra analysis on three regions of interest (ROIs): Broca's area (BA) in the frontal cortex for language, hand motor (HM) area in the primary motor cortex, and the primary visual cortex (V1).
Language reorganization may represent an adaptive phenomenon to compensate tumor invasion of the dominant hemisphere. However, the functional changes over time underlying language plasticity remain unknown. We evaluated language function in patients with low-grade glioma (LGG), using task-based functional MRI (tb-fMRI), graph-theory and standardized language assessment.
View Article and Find Full Text PDFBackground: Language function may reorganize to overcome focal impairment; however, the relation between functional and structural changes in patients with brain tumors remains unclear. We investigated the cortical volume of atypical language dominant (AD) patients with left frontal-insular high-grade (HGG) and low-grade glioma (LGG). We hypothesized atypical language being associated with areas of increased cortical volume in the right hemisphere, including language areas homologues.
View Article and Find Full Text PDFBrain tumors lead to modifications of brain networks. Graph theory plays an important role in clarifying the principles of brain connectivity. Our objective was to investigate network modifications related to tumor grade and location using resting-state functional magnetic resonance imaging (fMRI) and graph theory.
View Article and Find Full Text PDFWhen the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity.
View Article and Find Full Text PDFBrain tumors can have far-reaching impacts on functional networks. Language processing is typically lateralized to the left hemisphere, but also involves the right hemisphere and cerebellum. This resting-state functional MRI study investigated the proximal and distal effects of left-hemispheric brain tumors on language network connectivity in the ipsilesional and contralesional hemispheres.
View Article and Find Full Text PDFBilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark.
View Article and Find Full Text PDFBackground And Purpose: Assessment of the essential white matter fibers of arcuate fasciculus and corticospinal tract (CST), required for preoperative planning in brain tumor patients, relies on the reliability of diffusion tensor imaging (DTI). The recent development of multiband DTI (mb-DTI) based on simultaneous multislice excitation could maintain the overall quality of tractography while not exceeding standard clinical care time. To address this potential, we performed quantitative analyses to evaluate tractography results of arcuate fasciculus and CST acquired by mb-DTI in brain tumor patients.
View Article and Find Full Text PDFThere are many technical and nontechnical steps involved in a successful clinical functional MRI (fMRI) scan. The output from scanning and analysis can only be as good as the input, so task instruction and rehearsal are the most important steps during an clinical fMRI procedure. Properly pre-processed data significantly affects statistical analysis, which has a great impact on image interpretation.
View Article and Find Full Text PDFBackground Dynamic contrast agent-enhanced (DCE) perfusion MRI may help differentiate between nonneoplastic and malignant lesions in the spine. Purpose To investigate the correlation between fractional plasma volume (), a parameter derived from DCE perfusion MRI, and histopathologic diagnosis for spinal lesions. Materials and Methods In this retrospective study, patients who underwent DCE perfusion MRI and lesion biopsy between May 2015 and May 2018 were included.
View Article and Find Full Text PDF