Atezolizumab and bevacizumab show promise for treating hepatocellular carcinoma (HCC), but identifying responsive patients remains challenging, due to tumor heterogeneity. This study explores immune dynamics following this combination therapy. Between 2020 and 2023, 29 patients with advanced HCC who received atezolizumab plus bevacizumab at Severance Hospital, Seoul, were enrolled in this study.
View Article and Find Full Text PDFBackground: Sorafenib improves the overall survival in patients with advanced hepatocellular carcinoma (HCC). Dickkopf-1 (DKK1) is commonly overexpressed in HCC. In this study, we investigated whether the inhibition of DKK1 enhances the anti-tumor efficacy of sorafenib in HCC.
View Article and Find Full Text PDFBackground: Ursodeoxycholic acid (UDCA), statins, and ezetimibe (EZE) have demonstrated beneficial effects against non-alcoholic fatty liver disease (NAFLD). We investigated the efficacy of the combination of UDCA and the mix of rosuvastatin (RSV)/EZE in the treatment of NAFLD.
Methods: NAFLD mouse models were developed by injecting thioacetamide, fasting, and high-carbohydrate refeeding, high-fat diet, and choline-deficient L-amino acid-defined high-fat diet (CDAHFD).
Purpose: Liquid biopsy has emerged as a promising tool for minimally invasive and accurate detection of various malignancies. We aimed to apply molecular barcode sequencing to circulating tumour DNA (ctDNA) from liquid biopsies of hepatocellular carcinoma (HCC).
Study Design: Patients with HCC or benign liver disease were enrolled between 2017 and 2018.
The expression of Dickkopf-1 (DKK1), a negative regulator of the Wnt/β-catenin signaling pathway, is upregulated in hepatocellular carcinoma (HCC). Here, we investigated the tumorigenic and angiogenic potential of DKK1 in HCC. Stable cell lines were established using the clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9)-based DKK1 knock-out system in Hep3B cells and the tetracycline-based DKK1 inducible system in Huh7 cells.
View Article and Find Full Text PDFHepatocellular Carcinoma (HCC) is the most common type of primary liver cancer in adults and a leading cause of cancer-related deaths worldwide. Studies have shown that autophagy is significantly involved in carcinogenesis, in particular, driven by activated RAS signaling. Autophagy related 7 (Atg7) is a critical component for the formation of autophagosome and required for autophagy processes.
View Article and Find Full Text PDFHepatocellular carcinoma is a malignant disease with improved hepatic regeneration and survival, and is activated by human telomere transferase (hTERT). hTERT is expressed during early fetal development and switched off in most adult tissues, but it becomes reactivated in HCC. The exact mechanism regulating these expression changes remains unknown during HCC progress.
View Article and Find Full Text PDFMost patients with hepatocellular carcinoma (HCC) are diagnosed at an advanced stage of disease. Until recently, systemic treatment options that showed survival benefits in HCC have been limited to tyrosine kinase inhibitors, antibodies targeting oncogenic signaling pathways or VEGF receptors. The HCC tumor microenvironment is characterized by a dysfunction of the immune system through multiple mechanisms, including accumulation of various immunosuppressive factors, recruitment of regulatory T cells and myeloid-derived suppressor cells, and induction of T cell exhaustion accompanied with the interaction between immune checkpoint ligands and receptors.
View Article and Find Full Text PDFObjective: Gynecologic oncologists are uncertain about the safety of tibolone application in cervical adenocarcinoma (AC) patients. This study examined the possible adverse effects of tibolone on the survival of cervical AC patients.
Methods: Medical records of 70 cervical AC patients with International Federation of Gynecology and Obstetrics stages IA to IB were reviewed.
Background & Aims: Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice.
View Article and Find Full Text PDFBackground: Liver fibrosis and its end-stage disease, cirrhosis, are major risk factors for hepatocellular carcinoma (HCC) and present in 80 to 90 % of patients with HCC. Current genetically engineered mouse models for HCC, however, generally do not feature liver fibrosis, which is a critical discrepancy between human HCC and murine models thereof. In this study, we developed a simple transgenic mouse model of HCC within the context of a fibrotic liver.
View Article and Find Full Text PDFMutation in one of three RAS genes (i.e., HRAS, KRAS, and NRAS) leading to constitutive activation of RAS signaling pathways is considered a key oncogenic event in human carcinogenesis.
View Article and Find Full Text PDFBackground & Aims: Liver fibrosis is an increasing health concern worldwide and a major risk factor for hepatocellular carcinoma (HCC). Although the involvement of Hedgehog signaling in hepatic fibrosis has been known for some time, the causative role of activated Hedgehog signaling in liver fibrosis has not been verified in vivo.
Methods: Using hydrodynamics-based transfection, a transgenic mouse model has been developed that expresses Sonic Hedgehog (SHH), a ligand for Hedgehog signaling, in the liver.
Aim: Hepatocellular carcinoma (HCC), one of the most common malignancies in adults displays aberrant miRNA expression during its pathogenesis. We assessed expression of miRNA in surgically resected human HCC of an early stage and murine HCC with a high malignancy in order to find miRNA overexpressed in HCC regardless of tumor stage and underlying etiology. Further, the role of the deregulated miRNA in HCC pathogenesis was investigated.
View Article and Find Full Text PDFGenetically engineered mouse cancer models allow tumors to be imaged in vivo via co-expression of a reporter gene with a tumor-initiating gene. However, differential transcriptional and translational regulation between the tumor-initiating gene and the reporter gene can result in inconsistency between the actual tumor size and the size indicated by the imaging assay. To overcome this limitation, we developed a transgenic mouse in which two oncogenes, encoding P53(R172H) and KRAS(G12D), are expressed together with two reporter genes, encoding enhanced green fluorescent protein (EGFP) and firefly luciferase, in a single open reading frame following Cre-mediated DNA excision.
View Article and Find Full Text PDFMelanocortins, besides their central roles, have also recently been reported to regulate adipocyte metabolism. In this study, we attempted to characterize the mechanism underlying alpha-melanocyte-stimulating hormone (MSH)-induced lipolysis, and compared it with that of the adrenocorticotrophin hormone (ACTH) in 3T3-L1 adipocytes. Similar to ACTH, MSH treatment resulted in the release of glycerol into the cell supernatant.
View Article and Find Full Text PDFOur previous studies showed that the down-modulation of IL-18-induced immune response caused by oncoproteins E6 and E7 as one of the mechanisms underlying immune escape in HPV-induced cervical cancer cells. E42 residue of IL-18 also appears to be critical in the activity of IL-18. Single point mutation E42 in IL-18 show promise in the study of IL-18 binding motifs for HPV oncoproteins.
View Article and Find Full Text PDFCervical carcinoma is one of the most prevalent cancers in women worldwide, and human papillomavirus (HPV) type 16 is the most common agent linked to human cervical carcinoma. In order to identify various relevant factors affected by the E7 oncogene, we established a stable cell line, which constitutively expressed E7 using the HaCaT human keratinocyte cell line. The increased expression and activity of catalase in the E7-expressing HaCaT cells (HaCaT/E7) were verified via matrix-assisted laser desorption/ionization-time of flight, Western blot, and reverse transcription-polymerase chain reaction analyses.
View Article and Find Full Text PDFA process termed activation-induced cell death (AICD) is responsible for peripheral T cell tolerance after negative selection of self-reactive T cells, and deletion of hyperactivated T cells following the immune response. Cells in G1 phase of the cell cycle are most susceptible to AICD. We have investigated the relationship between the induction of AICD by phorbol 12-myristate 13-acetate plus ionomycin during the cell cycle and the expression of survivin, an inhibitor of the apoptosis protein (LAP) family.
View Article and Find Full Text PDFAlpha-lipoic acid is known to increase insulin sensitivity in vivo and to stimulate glucose uptake into adipose and muscle cells in vitro. In this study, alpha-lipoic acid was demonstrated to stimulate the autophosphorylation of insulin receptor and glucose uptake into 3T3-L1 adipocytes by reducing the thiol reactivity of intracellular proteins. To elucidate mechanism of this effect, role of protein thiol groups and H(2)O(2) in insulin receptor autophosphorylation and glucose uptake was investigated in 3T3-L1 adipocytes following stimulation with alpha-lipoic acid.
View Article and Find Full Text PDFObesity is associated with a number of pathological disorders such as non-insulin-dependent diabetes, hypertension, hyperlipidemia, and cardiovascular diseases. alpha-Lipoic acid (LA) has been demonstrated to activate the insulin signaling pathway and to exert insulin-like actions in adipose and muscle cells. Based on this similarity LA is expected to promote adipogenesis in pre-adipocytes.
View Article and Find Full Text PDFThe insulin signaling pathway has been reported to mediate R-alpha-lipoic acid- (R-LA-)-stimulated glucose uptake into 3T3-L1 adipocytes and L6 myotubes. We investigated the role of the thiol antioxidant dihydrolipoic acid (DHLA) and intracellular glutathione (GSH) in R-LA-stimulated glucose transport and explored the hypothesis that R-LA could increase glucose uptake into 3T3-L1 adipocytes in an oxidant-mimetic manner. R-LA pretreatment of 3T3-L1 cells stimulated glucose transport at early time points (30 min - 6 h), whereas it inhibited glucose uptake at later time points.
View Article and Find Full Text PDF