Efficiently detecting and characterizing individual spins in solid-state hosts is an essential step to expand the fields of quantum sensing and quantum information processing. While selective detection and control of a few C nuclear spins in diamond have been demonstrated using the electron spin of nitrogen-vacancy (NV) centers, a reliable, efficient, and automatic characterization method is desired. Here, we develop an automated algorithmic method for decomposing spectral data to identify and characterize multiple nuclear spins in diamond.
View Article and Find Full Text PDFGinseng has been widely used for therapeutic and preventive purposes for thousands of years. However, orally administered ginseng has very low bioavailability and absorption in the intestine. Therefore, fermented ginseng was developed to enhance the beneficial effects of ginseng in the intestine.
View Article and Find Full Text PDFFermentation of natural products is emerging as an important processing method and is attracting a lot of attention because it may have the advantage of having a new biological function. In this study, fruits of Opuntia ficus-indica were enzymatically hydrolyzed and then fermented with two species of yeast. We identified novel prominent markers in enzymatically hydrolyzed O.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2013
Improving the response time for polyimide (PI)-based capacitive humidity sensors is critical for real-time sensing. Multi-walled carbon nanotube (MWCNT) films were used to form the upper electrode of humidity sensor to realize an extremely short response times. MWCNT films were spray-deposited on a moisture-sensitive PI layer and subsequently patterned by oxygen plasma.
View Article and Find Full Text PDFPhotodissociation dynamics of 1,2-dibromopropane has been investigated at 234 and 265 nm by using the velocity map ion imaging method. At both pump energies, a single Gaussian-shaped speed distribution is observed for the Br*((2)P(1/2)) fragment, whereas at least three velocity components are found to be existent for the Br((2)P(3/2)) product. The secondary C-Br bond cleavage of the bromopropyl radical which is energized from the ultrafast primary C-Br bond rupture should be responsible for the multicomponent translational energy distribution at the low kinetic energy region of Br((2)P(3/2)).
View Article and Find Full Text PDFThe photodissociation dynamics of vinyl bromide and perfluorovinyl bromide have been investigated at 234 nm using a photofragment ion imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization scheme. The nascent Br atoms stem from the primary C-Br bond dissociation leading to the formation of C2H3(X) and Br(2Pj;j=1/2,3/2). The obtained translational energy distributions have been well fitted by a single Boltzmann and three Gaussian functions.
View Article and Find Full Text PDF