Bioprocess Biosyst Eng
June 2009
Pseudomonas fluorescence KNU417 was able to degrade up to 700 mg/L of phenol in 65 h but could not degrade 1,000 mg/L of phenol. Phenol degradation rate was noticeably enhanced by pre-adaptation. In addition, the cell was able to degrade up to 1,300 mg/L of phenol by pre-adapting to 700 mg/L of phenol.
View Article and Find Full Text PDFA microorganism capable of degrading phenol was isolated from crude oil contaminated soil and identified as Pseudomonas fluorescence. A porous polymer bead of polyvinyl alcohol (PVA) and Xanthan gum was found to be the best entrapment for phenol degradation in terms of bead shape (spherical form), bead strength, non-agglomeration, phenol degradation rate, and cell holding inside the bead. Activated carbon was co-immobilized with the microorganism in the bead, which readily adsorbed phenol to decrease initial phenol concentration.
View Article and Find Full Text PDF