Publications by authors named "Kyung Eun Sung"

As a result of improved relevance to in vivo physiology, in vitro studies are increasingly performed in diverse, three-dimensional (3D) biomaterials. However, material-cell type pairing effects on cytokine availability remain unclear. We cultured five cell types in agarose, alginate, collagen, Matrigel, or RGD-functionalized polyethylene glycol (PEG) hydrogels.

View Article and Find Full Text PDF

The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions.

View Article and Find Full Text PDF

Despite advances in medicine and biomedical sciences, cancer still remains a major health issue. Complex interactions between tumors and their microenvironment contribute to tumor initiation and progression and also contribute to the development of drug resistant tumor cell populations. The complexity and heterogeneity of tumors and their microenvironment make it challenging to both study and treat cancer.

View Article and Find Full Text PDF

The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.

View Article and Find Full Text PDF

During breast carcinoma progression, the three-dimensional (3D) microenvironment is continuously remodeled, and changes in the composition of the extracellular matrix (ECM) occur. High throughput screening platforms have been used to decipher the complexity of the microenvironment and to identify ECM components responsible for cancer progression. However, traditional screening platforms are typically limited to two-dimensional (2D) cultures, and often exclude the influence of ECM and stromal components.

View Article and Find Full Text PDF

The increasing interest in studying the interactions between cells and the extracellular matrix (ECM) has created a need for high throughput low-cost three-dimensional (3D) culture systems. The recent development of tubeless microfluidics via passive pumping provides a high throughput microchannel culture platform compatible with existing high throughput infrastructures (e.g.

View Article and Find Full Text PDF

The transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) is a critical step in breast cancer progression. We introduce a simple microfluidic 3D compartmentalized system in which mammary epithelial cells (MCF-DCIS) are co-cultured with human mammary fibroblasts (HMFs), which promotes a transition from DCIS to IDC in vitro. The model enables control of both spatial (distance-dependence) and temporal (transition from larger clusters) aspects within the microenvironment, allowing recapitulation of the in vivo environment in ways not practical with existing experimental models.

View Article and Find Full Text PDF

Particles combining multiple anisotropy dimensions offer possibilities for self-assembly that have not been extensively explored to date. The scope for assembly of microparticles in which the anisotropy dimensions of internal bond angle and chemical ordering have been varied is investigated. Colloidal assemblies with interesting open (i.

View Article and Find Full Text PDF

Interest in constructing a reliable 3-dimensional (3D) collagen culture platform in microfabricated systems is increasing as researchers strive to investigate reciprocal interaction between extracellular matrix (ECM) and cells under various conditions. However, in comparison to conventional 2-dimensional (2D) cell culture research, relatively little work has been reported about the polymerization of collagen type I matrix in microsystems. We, thus, present a study of 3D collagen polymerization to achieve reproducible 3D cell culture in microfluidic devices.

View Article and Find Full Text PDF

We study fluidic assembly and packing of spherical particles in rectilinear microchannels that are terminated by a flow constriction. First, we introduce a method for active assembly of particles in the confined microchannels by triggering a local constriction in the fluid channel using a partially closed membrane valve. This microfluidic valve allows active, on-demand particle assembly as opposed to previous passive assembly methods based on terminal channels and weirs.

View Article and Find Full Text PDF

We report a technique for continuous production of microparticles of variable size with new forms of anisotropy including alternating bond angles, configurable patchiness, and uniform roughness. The sequence and shape of the anisotropic particles are configured by exploiting a combination of confinement effects and microfluidics to pack precursor colloids with different properties into a narrow, terminal channel. The width and length of the channel relative to the particle size fully specify the configuration of the anisotropic particle that will be produced.

View Article and Find Full Text PDF

A microfabrication technique that uses a photolithographically patterned film as a microstencil has been developed. This microstencil has a bilayer structure comprised of parylene and SU-8 films with thicknesses from 4 to 100 microm. The parylene layer enables the microstencil to be mechanically peeled from hydrophilic substrates.

View Article and Find Full Text PDF

We have found that the surface and bulk solution properties in a microfabricated device affect the degree and probability of electrostretching of DNA molecules. Using lambda phage DNA, we found that significantly hydrophilic surfaces between the electrodes decrease the efficiency of stretching. Surfaces treated with higher silane (trimethylchlorosilane) concentrations performed better presumably due to the decreased nonspecific adsorption of DNA on these surfaces compared to their more hydrophilic counterparts.

View Article and Find Full Text PDF