We previously developed a machine learning (ML)-assisted system for predicting the clinical activity score (CAS) in thyroid-associated orbitopathy (TAO) using digital facial images taken by a digital single-lens reflex camera in a studio setting. In this study, we aimed to apply this system to smartphones and detect active TAO (CAS ≥3) using facial images captured by smartphone cameras. We evaluated the performance of our system on various smartphone models and compared it with the performance of ophthalmologists with varying clinical experience.
View Article and Find Full Text PDFPrevious studies have shown a correlation between resting heart rate (HR) measured by wearable devices and serum free thyroxine concentration in patients with thyroid dysfunction. We have developed a machine learning (ML)-assisted system that uses HR data collected from wearable devices to predict the occurrence of thyrotoxicosis in patients. HR monitoring data were collected using a wearable device for a period of 4 months in 175 patients with thyroid dysfunction.
View Article and Find Full Text PDFAlthough the clinical activity score (CAS) is a validated scoring system for identifying disease activity of thyroid-associated orbitopathy (TAO), it may produce differing results depending on the evaluator, and an experienced ophthalmologist is required for accurate evaluation. In this study, we developed a machine learning (ML)-assisted system to mimic an expert's CAS assessment using digital facial images and evaluated its accuracy for predicting the CAS and diagnosing active TAO (CAS ≥ 3). An ML-assisted system was designed to assess five CAS components related to inflammatory signs (redness of the eyelids, redness of the conjunctiva, swelling of the eyelids, inflammation of the caruncle and/or plica, and conjunctival edema) in patients' facial images and to predict the CAS by considering two components of subjective symptoms (spontaneous retrobulbar pain and pain on gaze).
View Article and Find Full Text PDF