In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT).
View Article and Find Full Text PDFPorous structures have been utilized in tactile sensors to improve sensitivity owing to their excellent deformability. Recently, tactile sensors using porous structures have been used in practical applications, such as bio-signal monitoring. However, highly sensitive responses are limited to the low-pressure range, and their sensitivity significantly decreases in a higher-pressure range.
View Article and Find Full Text PDFFlexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
Tactile sensor arrays have attracted considerable attention for their use in diverse applications, such as advanced robotics and interactive human-machine interfaces. However, conventional tactile sensor arrays suffer from electrical crosstalk caused by current leakages between the tactile cells. The approaches that have been proposed thus far to overcome this issue require complex rectifier circuits or a serial fabrication process.
View Article and Find Full Text PDF