Publications by authors named "Kyu-won Seo"

The stability of dry anaerobic digestion (AD) of food waste (FW) as well as the resulting methane gas generation was investigated from the perspective of system dynamics. Various organic loading rates were applied to the system by modifying the water content in the FW feed and solid retention time (SRT). The excessive organic loading due to the accumulation of volatile fatty acids (VFAs) from the feed with 80% water content during the short SRT (15 and 20 d) caused system failure.

View Article and Find Full Text PDF

This study evaluated the feasibility of using a silicon carbide (SiC) anaerobic ceramic membrane bioreactor (AnCMBR) to co-manage domestic wastewater (DWW) and food waste recycling wastewater (FRW). A pilot-scale SiC-AnCMBR was put into operation for 140 days under two different organic loading rates (OLRs): 5 kg COD m d (OLR 5) and 3 kg COD m d (OLR 3). The organic removal efficiency was 93.

View Article and Find Full Text PDF

An anaerobic ceramic membrane bioreactor (AnCMBR) has been attracted as an alternative technology to co-manage various organic substrates. This AnCMBR study investigated process performance and microbial community structure at decreasing temperatures to evaluate the potential of AnCMBR treatment for co-managing domestic wastewater (DWW) and food waste-recycling wastewater (FRW). As a result, the water flux (≥6.

View Article and Find Full Text PDF

A pilot-scale investigation of membrane-based aerobic digestion system dominated by endospore-forming bacteria was evaluated as one of the potential sludge treatment processes (STP). Most of the organic matter in the sludge was removed (90.1%) by the particular bacteria in the STP, which consisted of mixed liquor suspended solid (MLSS) contact reactor (MCR), MLSS oxidation reactor (MOR), and membrane bioreactor (MBR).

View Article and Find Full Text PDF

In this study, a novel algal biomass production method using a sediment microbial fuel cell (SMFC) system was assessed. Under the experimental conditions, CO(2) generation from the SMFC and its rate of increase were found to be dependent on the current generated from the SMFC. However, the CH(4) production rate from the SMFC was inhibited by the generation of current.

View Article and Find Full Text PDF