Oncolytic virotherapy has garnered attention as an antigen-agnostic therapeutic cancer vaccine that induces cancer-specific T cell responses without additional antigen loading. As anticancer immune responses are compromised by a lack of antigenicity and chronic immunosuppressive microenvironments, an effective immuno-oncology modality that converts cold tumors into hot tumors is crucial. To evaluate the immune-activating characteristics of oncolytic vaccinia virus (VACV; JX-594, pexastimogene devacirepvec), diverse murine syngeneic cancer models with different tissue types and immune microenvironments were used.
View Article and Find Full Text PDFSmart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging.
View Article and Find Full Text PDF