ACS Appl Mater Interfaces
November 2023
The goal of the present article is to develop flexoelectric polyelectrolyte elastomers for energy harvesting based on a poly(ethylene glycol)--poly(propylene glycol)--poly(ethylene glycol) dimethacrylate (PEG--PPG--PEG-DMA) triblock grafted with an ionic liquid (IL) such as allylmethylimidazolium bis(trifluoromethane sulfonyl) imide (AMIMTFSI). The IL-grafted triblock copolymer network possesses a balance of reasonably good ionic conductivity and high ion polarization during cantilever bending. Of particular importance is the achievement of high flexoelectric coefficients in some flexoelectric polyelectrolyte elastomer (FPE) compositions reaching 1368 μC/m at ambient temperature during mechanical deformation under intermittent square-wave bending mode.
View Article and Find Full Text PDFThe present article entails a novel concept of storing extra energy in a multifunctional polymer electrolyte membrane (PEM) beyond the storage capacity of a cathode, which is achieved by so-called "" upon simply deep discharging to a low potential range of a lithium-metal electrode (i.e., -0.
View Article and Find Full Text PDFThe present article entails the emergence of diverse crystal polymorphs following thermal quenching into various coexistence regions of binary azobenzene chromophore (ACh)/diacrylate (DA) solution and of azobenzene/nematic liquid crystal (E7) mixture. Development of various crystal topologies encompassing rhomboidal and hexagonal shapes can be witnessed in a manner dependent on thermal quenched depths into the crystal + liquid coexistence region of ACh/DA system. Upon spraying with compressed carbon dioxide (CO ) fluid, the local temperature gradient is generated resulting in spherulitic morphology showing discrete lamellae undergoing twisting locally in some regions and branched dendrites or seaweeds in another.
View Article and Find Full Text PDFIonic electroactive polymers (iEAPs) can generate electrical energy under bending deformations exhibiting great potential for fabricating energy harvesters from dynamic vibrating environments. According to a previous study, this flexoelectric energy-harvesting potential is explored in polymer electrolyte membrane (PEM) assemblies subjected to intermittent square wave bending modes. The above study reveals that the mechanoelectrical transduction is likely to be the consequence of ion polarization under a pressure gradient across the PEM thickness.
View Article and Find Full Text PDFThe first study of the flexo-ionic effect, i.e., mechanical deformation-induced electric signal, of the recently discovered ionic liquid crystal elastomers (iLCEs) is reported.
View Article and Find Full Text PDFThe present article entails the generation of flexoelectricity during cantilever bending of a solid polymer electrolyte membrane (PEM), composed of poly(ethylene glycol) diacrylate (PEGDA) precursor and ionic liquid (hexylmethylimidazolium hexafluorophosphate). The effects of thiosiloxane modification of PEGDA precursor on glass transition, ionic conductivity, and flexoelectric performance have been explored as a function of PEM composition. The glass transition temperature () of the PEM declines with increasing thiosiloxane amount in the PEGDA co-network, while the ionic conductivity improves.
View Article and Find Full Text PDFPreparation and low voltage induced bending (converse flexoelectricity) of crosslinked poly(ethylene glycol) diacrylate (PEGDA), modified with thiosiloxane (TS) and ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) (IL) are reported. In between 2µm PEDOT:PSS electrodes at 1 V, it provides durable (95% retention under 5000 cycles) and relatively fast (2 s switching time) actuation with the second largest strain observed so far in ionic electro-active polymers (iEAPs). In between 40 nm gold electrodes under 8 V DC voltage, the film can be completely curled up (270° bending angle) with 6% strain that, to the best of the knowledge, is unpreceded among iEAPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The role of side-chain branching in flexoelectric properties of a flexible, ionic solid polymer electrolyte membrane (PEM) has been investigated subjected to mechanical bending. These PEMs were synthesized via photopolymerization of the bifunctional poly(ethylene glycol) diacrylate (PEGDA) network attached with monofunctional poly(ethylene glycol) methyl ether acrylate (PEGMEA) branches in their ternary mixtures with lithium bis(tri-fluoromethane sulfonyl) imide (LiTFSI) salt. Both the PEGDA polymer precursor and PEGDMA side branches are capable of ionizing the lithium salt, but the dissociated lithium cations can also form the complexation with ether oxygen of PEGDA.
View Article and Find Full Text PDFThis paper describes the preparation, physical properties, and electric bending actuation of a new class of active materials-ionic liquid crystal elastomers (iLCEs). It is demonstrated that iLCEs can be actuated by low-frequency AC or DC voltages of less than 1 V. The bending strains of the unoptimized first iLCEs are already comparable to the well-developed ionic electroactive polymers.
View Article and Find Full Text PDFLow current drain driven by the low ionic conductivity of a solid polymer electrolyte is one of the major obstacles of solid-state battery. In an effort to improve the ionic conductivity of a solid polymer electrolyte membrane (PEM), polyethylene glycol diacrylate (PEGDA) and monofunctional polyethylene glycol methyl ether acrylate (PEGMEA) were copolymerized via photopolymerization to afford a PEGDA network with dangling PEGMEA side chains. By attaching PEGMEA side branches to the PEGDA network backbone, the glass transition temperature (T) was found to decrease, which may be controlled by relative amounts of PEGMEA and PEGDA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2015
We demonstrate a simple route to directionally grow crystals of oligothiophenes, based on 2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene with degrees of polymerization of 2 (BTTT-2) and 4 (BTTT-4) via zone annealing (ZA) of preseeded films. ZA of spun-cast films of BTTT-2 does not yield highly aligned crystals. However, if the film is oven-annealed briefly prior to ZA, highly aligned crystals that are millimeters in length can be grown, whose length depends on the velocity of the ZA front.
View Article and Find Full Text PDFBy virtue of antioxidant and anti-inflammable properties, plant-derived phytochemicals such as mangiferin and genistein have attracted considerable attention for functionalization of polymeric hemodialysis (HD) membranes via solution blending. In-vitro dihydrorhodamine (DHR) assay of the genistein-modified membranes revealed drastic reduction in the level of the reactive oxygen species (ROS). In contrast, mangiferin-modified HD membrane manifested the pro-oxidant activity.
View Article and Find Full Text PDFHemocompatibility of genistein-modified poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) hemodialysis (HD) membranes has been investigated in vitro with emphasis on evaluation of cell viability, antioxidant, anti-inflammatory, and antiplatelet adhesion properties. Genistein modified PES/PVP membranes reveal significant reduction of the reactive oxygen species and also considerable suppression of interleukin-1β and tumor necrosis factor-α levels in whole blood, but to a lesser extent ininterleukin-6. The incorporation of PVP into the HD membrane reduces platelet adhesion by virtue of its hydrophilicity.
View Article and Find Full Text PDFGenistein is a phytochemical with a broad range of desirable biological activity for wound healing. However, its poor bioavailability requires developing a new method for fabricating an appropriate carrier vehicle to deliver genistein in a sustained manner. Based on the guidance afforded by the ternary phase diagram of poly(D,L-lactic acid) (PDLLA), poly(ethylene oxide) (PEO), and genistein blends, certain selective compositions were electrospun.
View Article and Find Full Text PDFSolid-liquid phase diagrams of binary crystalline blends of genistein with poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG) were established experimentally and theoretically based on the combined Flory-Huggins free energy of liquid-liquid phase separation and the phase field free energy pertaining to crystal solidification. The liquidus lines obtained self-consistently were found to agree well with trends of depressed crystal melting transitions in genistein/PEO and genistein/PEG blends, exhibiting eutectic phase behavior. Of particular importance is the lowering of the eutectic temperature of the genistein/PEO blend by about 60 °C upon switching to the genistein/PEG system.
View Article and Find Full Text PDFGenistein-modified poly(amide):poly(vinyl pyrrolidone) (PA:PVP/G) hemodialysis membranes have been fabricated by coagulation via solvent (dimethyl sulfoxide, DMSO)/nonsolvent (water) exchange. The antioxidant and anti-inflammatory properties of the unmodified PA:PVP membranes were evaluated in vitro using human blood. It was found that these unmodified PA:PVP membranes were noncytotoxic to peripheral blood mononuclear cells (PBMC) but raised intracellular reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2011
Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e.
View Article and Find Full Text PDFTo elucidate induced smectic A and smectic B phases in binary nematic liquid crystal mixtures, a generalized thermodynamic model has been developed in the framework of a combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for orientational ordering, McMillan free energy for smectic ordering, Chandrasekhar-Clark free energy for hexagonal ordering, and phase field free energy for crystal solidification. Although nematic constituents have no smectic phase, the complexation between these constituent liquid crystal molecules in their mixture resulted in a more stable ordered phase such as smectic A or B phases. Various phase transitions of crystal-smectic, smectic-nematic, and nematic-isotropic phases have been determined by minimizing the above combined free energies with respect to each order parameter of these mesophases.
View Article and Find Full Text PDFA phase diagram of a binary mixture of photochromic molecule (spiropyran) and mesogenic diacrylate monomer has been established by means of differential scanning calorimetry and polarized optical microscopy. Subsequently, a theoretical phase diagram has been calculated by self-consistently solving the combined Flory-Huggins free energy for isotropic mixing, Maier-Saupe free energy for nematic ordering, and phase field free energy for crystal solidification. The phase diagram thus obtained consists of various coexistence regions involving single-phase crystals, pure nematic, crystal + liquid, crystal + nematic, and crystal + crystal coexistence gaps.
View Article and Find Full Text PDFEutectic behavior and the induced crystalline phase in mixtures of hexagonal columnar liquid crystal, 2, 3, 6, 7, 10, 11-hexakis-(pentyloxy) triphenylene (HPTP)/reactive mesogenic diacrylate monomer, 4-(3-acryloyloxypropyloxy)-benzoic acid 2-methyl-1, 4-phenylene ester (RM257) have been investigated both experimentally and theoretically. To determine the theoretical phase boundaries, we combined the free energy of Flory-Huggins free energy for liquid-liquid demixing, Maier-Saupe free energy of nematic ordering, and Chandrasekhar-Clark free energy of hexagonal ordering. The calculated phase diagram of the HPTP/RM257 blend is essentially of a eutectic type that consists of isotropic (I), nematic (N), and hexagonal columnar (Col(h)) regions, and nematic + isotropic (N+I), hexagonal columnar + isotropic (Col(h)+I), and hexagonal columnar + nematic (Col(h)+N) coexistence regions, bound by the liquidus and solidus lines.
View Article and Find Full Text PDFSelf-motion of a growing single crystal of azobenzene chromophore in triacrylate solution (TA) is investigated in relation to the solid-liquid phase diagram bound by the solidus and liquidus lines. Upon thermal quenching from the isotropic melt to the crystal + liquid gap, various single crystals develop in a manner dependent on concentration and supercooling depth. During the crystal growth, TA solvent is rejected from the growing faceted fronts, enriching with TA in close proximity to the crystal-solution interface.
View Article and Find Full Text PDFMiscibility and morphology of poly(ether sulfone)/poly(vinyl pyrrolidone) (PES/PVP) blends containing a crystalline phytochemical called mangiferin were investigated using differential scanning calorimetry (DSC), Fourier transformed infrared spectroscopy (FTIR), and polarized optical microscopy (POM). The binary blends of PES/PVP were found to be completely miscible. However, FTIR experiments revealed no spectral shift that is attributable to the miscibility of the PES/PVP pair, although the occurrence of hydrogen-bonding interactions can be confirmed in binary blends of both PES/mangiferin and PVP/mangiferin.
View Article and Find Full Text PDFEffects of light intensity gradient on development of intricate hierarchical morphology of semicrystalline polyethylene oxide (PEO) and photoreactive diacrylate (DA) blends undergoing photopolymerization-induced crystallization have been demonstrated experimentally and theoretically. The melting temperature of PEO was found to decline upon addition of DA monomer. A solid-liquid phase diagram has been established by self-consistently solving the combined phase field free energy of crystal solidification and Flory-Huggins (FH) free energy of liquid-liquid demixing.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2009
A hypothetical phase diagram of a crystalline polymer/photoreactive monomer mixture has been calculated on the basis of phase field (PF) free energy of crystal solidification in conjunction with Flory-Huggins (FH) free energy of liquid-liquid demixing to guide the morphology development during photopolymerization of poly(ethylene oxide)/triacrylate blend. The self-consistent solution of the combined PF-FH theory exhibits a crystalline-amorphous phase diagram showing the coexistence of solid+liquid gap bound by the liquidus and solidus lines, followed by an upper critical solution temperature at a lower temperature. When photopolymerization was triggered in the isotropic region, i.
View Article and Find Full Text PDF