Two-dimensional (2D) materials have many applications ranging from heterostructure electronics to nanofluidics and quantum technology. In order to effectively utilize 2D materials towards these ends, they must be transferred and integrated into complex device geometries. In this report, we investigate two conventional methods for the transfer of 2D materials: viscoelastic stamping with polydimethylsiloxane (PDMS) and a heated transfer with poly bis-A carbonate (PC).
View Article and Find Full Text PDFThis study investigates transfer ribonucleic acid (tRNA) conformational dynamics in the context of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) using solid-state silicon nitride (SiN) nanopore technology. SiN nanopores in thin membranes with specific dimensions exhibit high signal resolution, enabling real-time and single-molecule electronic detection of tRNA conformational changes. We focus on human mitochondrial tRNALeu(UAA) (mt-Leu(UAA)) that decodes Leu codons UUA/UUG (UUR) during protein synthesis on the mt-ribosome.
View Article and Find Full Text PDFUltrathin nanopore sensors allow single-molecule and polymer measurements at sub-microsecond time resolution enabled by high current signals (∼10-30 nA). We demonstrate for the first time the experimental probing of the ultrafast translocation and folded dynamics of double-stranded DNA (dsDNA) through a nanopore at 10 MHz bandwidth with acquisition of data points per 25 ns (150 MB/s). By introducing a rigorous algorithm, we are able to accurately identify each current level present within translocation events and elucidate the dynamic folded and unfolded behaviors.
View Article and Find Full Text PDFThe combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties.
View Article and Find Full Text PDF