Publications by authors named "Kyriakos Spanoudes"

Feline infectious peritonitis (FIP) is a severe and invariably fatal disease affecting both domestic and wild felines with limited effective therapeutic options available. By considering the significant immunomodulatory effects of vitamin E observed in both animal and human models under physiological and pathological conditions, we have provided a full in silico investigation of vitamin E and related compounds and their effect on the crystal structure of feline infectious peritonitis virus 3C-like protease (FIPV-3CL). This work revealed the -tocotrienol and -tocotrienol analogs as inhibitor candidates for this protein, suggesting their potential as possible drug compounds against FIP or their supplementary use with current medicines against this disease.

View Article and Find Full Text PDF

Purpose: The current study provides insights into the challenges of safely operating a magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) robotic system in a high-field MRI scanner in terms of robotic motion accuracy.

Materials And Methods: Grid sonications were carried out in phantoms and excised porcine tissue in a 3T MRI scanner using an existing MRgFUS robotic system. Fast low-angle shot-based magnetic resonance thermometry was employed for the intraprocedural monitoring of thermal distribution.

View Article and Find Full Text PDF

Purpose: The study aimed to compare the performance of eight commercially available single-element High Intensity Focused Ultrasound (HIFU) transducers in terms of Magnetic Resonance Imaging (MRI) compatibility.

Methods: Imaging of an agar-based MRI phantom was performed in a 3 T MRI scanner utilizing T2-Weighted Fast Spin Echo (FSE) and Fast low angle shot (FLASH) sequences, which are typically employed for high resolution anatomical imaging and thermometry, respectively. Reference magnitude and phase images of the phantom were compared with images acquired in the presence of each transducer in terms of the signal to noise ratio (SNR), introduced artifacts, and overall image quality.

View Article and Find Full Text PDF

In recent years, veterinary medicine has expanded its practices beyond conventional methods, gradually integrating the Focused Ultrasound (FUS) technology in the care of companion animals like dogs and cats. The current study aimed to examine the feasibility and provide insights into the application of thermal FUS in canine and feline mammary cancer therapy. FUS was delivered by a 2-MHz single-element spherically focused ultrasonic transducer as integrated with an existing robotic positioning device.

View Article and Find Full Text PDF

Purpose: In recent years, veterinary medicine has enhanced its applications beyond traditional approaches, progressively incorporating the Focused Ultrasound (FUS) technology. This study investigated the ability of FUS to precisely ablate naturally occurring canine and feline soft tissue sarcomas (STS).

Methods: Six dogs and four cats with superficial tumours were enrolled in the study.

View Article and Find Full Text PDF

Background: Magnetic resonance-guided focused ultrasound surgery is an incisionless energy-based thermal method that is used for ablating tumors in the veterinary clinic.

Aims And Objectives: In this article we describe a prototype of a veterinary system compatible with magnetic resonance imaging intended for small-to-medium-sized companion animals that was developed and tested in adult rabbits.

Methods: Real-time monitoring of the ablation during the experiment was possible with MR thermometry.

View Article and Find Full Text PDF

Background: A prototype robotic system that uses magnetic resonance guided focused ultrasound (MRgFUS) technology is presented. It features three degrees of freedom (DOF) and is intended for thermal ablation of abdominal cancer.

Methods: The device is equipped with three identical transducers being offset between them, thus focussing at different depths in tissue.

View Article and Find Full Text PDF

Background: A magnetic resonance image (MRI) guided robotic device for focussed ultrasound therapy of prostate cancer (PC) was developed. The device offers movement in 5 degrees of freedom (DOF) and uses a single-element transducer that operates at 3.2 MHz, has a diameter of 25 mm and focuses at 45 mm.

View Article and Find Full Text PDF

Cellular therapies play an important role in tendon tissue engineering, with tenocytes being the most prominent and potent cell population available. However, for the development of a rich extracellular matrix tenocyte-assembled tendon equivalent, prolonged in vitro culture is required, which is associated with phenotypic drift. Recapitulation of tendon tissue microenvironment in vitro with cues that enhance and accelerate extracellular matrix synthesis and deposition, whilst maintaining tenocyte phenotype, may lead to functional cell therapies.

View Article and Find Full Text PDF

This data article contains data related to the research article entitled "Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis" [1]. We report measurements on tenocyte viability, metabolic activity and proliferation on substrates with different topographies. We also report the effect of substrates with different topographies on host cells in a subcutaneous model.

View Article and Find Full Text PDF

Self-assembly in tissue engineering refers to the spontaneous chemical or biological association of components to form a distinct functional construct, reminiscent of native tissue. Such self-assembled systems have been widely used to develop platforms for the delivery of therapeutic and/or bioactive molecules and various cell populations. Tissue morphology and functional characteristics have been recapitulated in several self-assembled constructs, designed to incorporate stimuli responsiveness and controlled architecture through spatial confinement or field manipulation.

View Article and Find Full Text PDF

Unlabelled: Controlling the cell-substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface.

View Article and Find Full Text PDF

The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system.

View Article and Find Full Text PDF

Tendon injuries are prevalent and problematic, especially among young and otherwise healthy individuals. The inherently slow innate healing process combined with the inevitable scar tissue formation compromise functional recovery, imposing the need for the development of therapeutic strategies. The limited number of low activity/reparative capacity tendon-resident cells has directed substantial research efforts towards the exploration of the therapeutic potential of various stem cells in tendon injuries and pathophysiologies.

View Article and Find Full Text PDF

Tendon injuries constitute an unmet clinical need, with 3 to 5 million new incidents occurring annually worldwide. Tissue grafting and biomaterial-based approaches fail to provide environments that are conducive to regeneration; instead they lead to nonspecific cell adhesion and scar tissue formation, which collectively impair functionality. Cell based therapies may potentially recover native tendon function, if tenocyte trans-differentiation can be evaded and stem cell differentiation towards tenogenic lineage is attained.

View Article and Find Full Text PDF