Publications by authors named "Kyriakos Kokkoris"

Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth.

View Article and Find Full Text PDF

Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown.

View Article and Find Full Text PDF

Poly(A)-specific ribonuclease (PARN) is a homodimeric, processive, and cap-interacting 3' exoribonuclease that efficiently degrades eukaryotic mRNA poly(A) tails. The crystal structure of a C-terminally truncated PARN in complex with m(7)GpppG reveals that, in one subunit, m(7)GpppG binds to a cavity formed by the RRM domain and the nuclease domain, whereas in the other subunit, it binds almost exclusively to the RRM domain. Importantly, our structural and competition data show that the cap-binding site overlaps with the active site in the nuclease domain.

View Article and Find Full Text PDF

Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive and cap-interacting 3' exoribonuclease that efficiently degrades mRNA poly(A) tails. Here we show that the RNA recognition motif (RRM) of PARN harbors both poly(A) and cap binding properties, suggesting that the RRM plays an important role for the two critical and unique properties that are tightly associated with PARN activity, i.e.

View Article and Find Full Text PDF