Clin Chem Lab Med
September 2024
Emerging technology in laboratory medicine can be defined as an analytical method (including biomarkers) or device (software, applications, and algorithms) that by its stage of development, translation into broad routine clinical practice, or geographical adoption and implementation has the potential to add value to clinical diagnostics. Paediatric laboratory medicine itself may be considered an emerging area of specialisation that is established relatively recently following increased appreciation and understanding of the unique physiology and healthcare needs of the children. Through four clinical (neonatal hypoglycaemia, neonatal hyperbilirubinaemia, sickle cell disorder, congenital adrenal hyperplasia) and six technological (microassays, noninvasive testing, alternative matrices, next generation sequencing, exosome analysis, machine learning) illustrations, key takeaways of application of emerging technology for each area are summarised.
View Article and Find Full Text PDFLAMA2-related muscular dystrophy is caused by pathogenic variants of the alpha2 subunit of Laminin. This common form of muscular dystrophy is characterized by elevated CK >1000IU/L, dystrophic changes on muscle biopsy, complete or partial absence of merosin staining, and both central and peripheral nervous system involvement. Advancements in genomic testing using NGS and wider application of RNA sequencing has expanded our knowledge of novel non-coding pathogenic variants in LAMA2.
View Article and Find Full Text PDFCanonical splice site variants (CSSVs) are often presumed to cause loss-of-function (LoF) and are assigned very strong evidence of pathogenicity (according to American College of Medical Genetics/Association for Molecular Pathology criterion PVS1). The exact nature and predictability of splicing effects of unselected rare CSSVs in blood-expressed genes are poorly understood. We identified 168 rare CSSVs in blood-expressed genes in 112 individuals using genome sequencing, and studied their impact on splicing using RNA sequencing (RNA-seq).
View Article and Find Full Text PDFAccurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA.
View Article and Find Full Text PDFBackground: The cochlear implant (CI) has proven to be a successful treatment for patients with severe-to-profound sensorineural hearing loss, however outcome variance exists. We sought to evaluate particular mutations discovered in previously established sensory and neural partition genes and compare post-operative CI outcomes.
Materials And Methods: Utilizing a prospective cohort study design, blood samples collected from adult patients with non-syndromic hearing loss undergoing CI were tested for 54 genes of interest with high-throughput sequencing.
Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown.
View Article and Find Full Text PDFWe conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset.
View Article and Find Full Text PDFBackground: Neuronal ceroid lipofuscinoses are neurodegenerative disorders. To investigate the diagnostic yield of direct Sanger sequencing of the genes, we reviewed Molecular Genetics Laboratory Database for molecular genetic test results of the genes from a single clinical molecular diagnostic laboratory.
Methods: We reviewed electronic patient charts.
Background: Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a "first of its kind", comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses.
Methods: The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant's blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators.
Background And Objective: Creatine deficiency may play a role in the neurobiology of autism and may represent a treatable cause of autism. The goal of the study was to ascertain the prevalence of creatine deficiency syndromes (CDSs) in children with autism spectrum disorder (ASD).
Methods: In a prospective multicenter study, 443 children were investigated after a confirmed diagnosis of ASD.
Background: Understanding age- and sex-specific biological changes in metabolic disease biomarkers is essential for their appropriate utilization in management of children with inborn errors of metabolism (IEM). The CALIPER program aimed to establish pediatric reference values in healthy community children for common metabolic biomarkers and determine the effects of key covariates including age and sex across the pediatric age.
Methods: A cohort of 500 healthy children and adolescents from birth to 19years were initially recruited to establish pediatric reference intervals according to the CLSI C28-A3 guidelines.
Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver.
View Article and Find Full Text PDFBackground: Urinary concentrations of creatine and guanidinoacetic acid divided by creatinine are informative markers for cerebral creatine deficiency syndromes (CDSs). The renal excretion of these substances varies substantially with age and sex, challenging the sensitivity and specificity of postanalytical interpretation.
Methods: Results from 155 patients with CDS and 12 507 reference individuals were contributed by 5 diagnostic laboratories.
Background: Inherited neurotransmitter disorders are primary defects of neurotransmitter metabolism. The main purpose of this retrospective cohort study was to identify prevalence of inherited neurotransmitter disorders.
Methods: This retrospective cohort study does not have inclusion criteria; rather included all patients who underwent cerebrospinal fluid (CSF) homovanillic and 5-hydroxyindol acetic acid measurements.
Background And Hypothesis: Pyridoxine dependent epilepsy (PDE) due to mutations in the ALDH7A1 gene (PDE-ALDH7A1) is caused by α-aminoadipic-semialdehyde-dehydrogenase enzyme deficiency in the lysine pathway resulting in the accumulation of α-aminoadipic acid semialdehyde (α-AASA). Classical presentation is neonatal intractable seizures with a dramatic response to pyridoxine. Pyridoxine therapy does not prevent developmental delays in the majority of the patients.
View Article and Find Full Text PDFBackground: To develop an accurate stable isotope dilution assay for simultaneous quantification of creatine metabolites ornithine, arginine, creatine, creatinine, and guanidinoacetate in very small blood sample volumes to study creatine metabolism in mice.
Methods: Liquid-chromatography (C18) tandem mass spectrometry with butylation was performed in positive ionization mode. Stable isotope dilution assay with external calibration was applied to three different specimen types, plasma, whole blood and dried blood spot (DBS).
Pyridoxine dependent epilepsy (PDE) is caused by mutations in the gene (PDE-) encoding α-aminoadipic-semialdehyde-dehydrogenase enzyme in the lysine catabolic pathway resulting in an accumulation of α-aminoadipic-acid-semialdehyde (α-AASA). We present the one-year treatment outcome of a patient on a lysine-restricted diet. Serial cerebral-spinal-fluid (CSF) α-AASA and CSF pipecolic-acid levels showed decreased levels but did not normalize.
View Article and Find Full Text PDFArginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2) mice.
View Article and Find Full Text PDFBackground: Pediatric endocrinopathies are commonly diagnosed and monitored by measuring hormones of the hypothalamic-pituitary-gonadal axis. Because growth and development can markedly influence normal circulating concentrations of fertility hormones, accurate reference intervals established on the basis of a healthy, nonhospitalized pediatric population and that reflect age-, gender-, and pubertal stage-specific changes are essential for test result interpretation.
Methods: Healthy children and adolescents (n = 1234) were recruited from a multiethnic population as part of the CALIPER study.
Background: Reference intervals are indispensable in evaluating laboratory test results; however, appropriately partitioned pediatric reference values are not readily available. The Canadian Laboratory Initiative for Pediatric Reference Intervals (CALIPER) program is aimed at establishing the influence of age, sex, ethnicity, and body mass index on biochemical markers and developing a comprehensive database of pediatric reference intervals using an a posteriori approach.
Methods: A total of 1482 samples were collected from ethnically diverse healthy children ages 2 days to 18 years and analyzed on the Abbott ARCHITECT i2000.
Objectives: To develop an accurate assay and establish the normal reference intervals for serum cortisol, corticosterone, 11-deoxycortisol, androstenedione, 21-hydroxyprogesterone, testosterone, 17-hydroxyprogesterone, and progesterone. These steroids are commonly used as biomarkers for the diagnosis and monitoring of endocrine diseases such as congenital adrenal hyperplasia. Appropriate age- and gender-stratified reference intervals are essential in accurate interpretation of steroid hormone levels.
View Article and Find Full Text PDFBackground: Pediatric healthcare is critically dependent on the availability of accurate and precise laboratory biomarkers of pediatric disease, and on the availability of reference intervals to allow appropriate clinical interpretation. The development and growth of children profoundly influence normal circulating concentrations of biochemical markers and thus the respective reference intervals. There are currently substantial gaps in our knowledge of the influences of age, sex, and ethnicity on reference intervals.
View Article and Find Full Text PDF