Wildfires drastically impact the soil environment, altering the soil organic matter, forming pyrolyzed compounds, and markedly reducing the diversity of microorganisms. Pyrophilous fungi, especially the species from the orders Pezizales and Agaricales, are fire-responsive fungal colonizers of post-fire soil that have historically been found fruiting on burned soil and thus may encode mechanisms of processing these compounds in their genomes. Pyrophilous fungi are diverse.
View Article and Find Full Text PDFForest fires generate a large amount of carbon that remains resident on the site as dead and partially 'pyrolysed' (i.e. burnt) material that has long residency times and constitutes a significant pool in fire-prone ecosystems.
View Article and Find Full Text PDFPlants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized.
View Article and Find Full Text PDF