The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and onset of the coronavirus disease-19 (COVID-19) pandemic led to an immediate need for therapeutic treatment options. Therapeutic antibodies were developed to fill a gap when traditional antivirals were not available. In late 2020, the United States Government undertook an effort to compare candidate therapeutic antibodies in virus neutralization assays and in the hamster model of SARS-CoV-2 infection.
View Article and Find Full Text PDFBackground: Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations.
Methods: Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3.
Background: Ebola virus (EBOV) disease (EVD) is one of the most severe and fatal viral hemorrhagic fevers and appears to mimic many clinical and laboratory manifestations of hemophagocytic lymphohistiocytosis syndrome (HLS), also known as macrophage activation syndrome. However, a clear association is yet to be firmly established for effective host-targeted, immunomodulatory therapeutic approaches to improve outcomes in patients with severe EVD.
Methods: Twenty-four rhesus monkeys were exposed intramuscularly to the EBOV Kikwit isolate and euthanized at prescheduled time points or when they reached the end-stage disease criteria.
Understanding early innate immune responses to coronavirus disease 2019 (COVID-19) is crucial to developing targeted therapies to mitigate disease severity. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection elicits interferon expression leading to transcription of IFN-stimulated genes (ISGs) to control viral replication and spread. SARS-CoV-2 infection also elicits NF-κB signaling which regulates inflammatory cytokine expression contributing to viral control and likely disease severity.
View Article and Find Full Text PDFOngoing Ebola virus disease outbreaks in the Democratic Republic of the Congo follow the largest recorded outbreak in Western Africa (2013-2016). To combat outbreaks, testing of medical countermeasures (therapeutics or vaccines) requires a well-defined, reproducible, animal model. Here we present Ebola virus disease kinetics in 24 Chinese-origin rhesus monkeys exposed intramuscularly to a highly characterized, commercially available Kikwit Ebola virus Filovirus Animal Non-Clinical Group (FANG) stock.
View Article and Find Full Text PDF