Background: Tumor heterogeneity may lead to false negative test results for tissue biopsy-based companion diagnostic tests. Real-time polymerase chain reaction (PCR) and digital PCR assays are used to detect rare alleles in cell-free circulating DNA for liquid biopsies; however, those tests lack strong sensitivity at low allele frequencies. We show here a novel real-time digital PCR instrument that utilizes cycle-based amplification curves to further improve the sensitivity and quantification accuracy of digital PCR.
View Article and Find Full Text PDFA real-time dPCR system was developed to improve the sensitivity, specificity and quantification accuracy of end point dPCR. We compared three technologies - real-time qPCR, end point dPCR and real-time dPCR - in the context of SARS-CoV-2. Some improvement in limit of detection was obtained with end point dPCR compared with real-time qPCR, and the limit of detection was further improved with the newly developed real-time dPCR technology through removal of false-positive signals.
View Article and Find Full Text PDF