Publications by authors named "Kyowon Kim"

The nonlinear response of nanoporous silicon optical waveguides is investigated using a novel pump-probe method. In this approach we use a two-frequency heterodyne technique to measure the pump-induced transient change in phase and intensity in a single measurement. We measure a 100 picosecond material response time and report behavior matching a physical model dominated by free-carrier effects significantly stronger than those observed in traditional silicon-based waveguides.

View Article and Find Full Text PDF

Optical waveguides comprised of nanoporous materials are uniquely suited for on-chip sensing applications, because they allow for a target chemical or analyte to directly infiltrate the optical material that comprises the core of the waveguide. We describe here the fabrication and characterization of nanoporous waveguides, and demonstrate their usefulness in measuring small changes in refractive index when exposed to a test analyte. We use a process of electrochemical etching and laser oxidation to produce channel waveguides and integrated on-chip Mach-Zehnder structures, and we compare the responsivity and interferometric stability of the integrated sensor to that of a fiber-based interferometer.

View Article and Find Full Text PDF