Publications by authors named "Kyoungseon Min"

To overcome the climate crisis, various greenhouse gas (GHG) mitigation strategies have been developed, and every effort has been made to achieve carbon neutrality. Given that petroleum-based industries and the transportation sector emit enormous amounts of GHGs, the product spectra of biorefineries should be expanded beyond drop-in biofuels to include more value-added products. This study aimed to construct a CO mitigation system.

View Article and Find Full Text PDF

Due to the severe climate crisis, biorefineries have been highlighted as replacements for fossil fuel-derived refineries. In traditional sugar-based biorefineries, levulinic acid (LA) is a byproduct. Nonetheless, in 2002, the US Department of Energy noted that LA is a significant building block obtained from biomass, and the biorefinery paradigm has shifted from being sugar-based to non-sugar-based.

View Article and Find Full Text PDF

Currently, humankind is facing a serious environmental and climate crisis, which has accelerated the research on producing bioenergy from waste biomass as a carbon-neutral feedstock. In this study, the aim was to develop an upcycling strategy for waste biomass to solid-type biofuel conversion for power generation. Various types of waste biomass (i.

View Article and Find Full Text PDF

Saccharification is one of the most noteworthy processes in biomass-based biorefineries. In particular, the lytic polysaccharide monooxygenase has recently emerged as an oxidative cleavage-recalcitrant polysaccharide; however, there is insufficient information regarding its application to actual biomass. Accordingly, this study focused optimizing the recombinant expression level of a bacterial lytic polysaccharide monooxygenase from Thermobifida fusca (TfLPMO), which was characterized as a cellulolytic enzyme.

View Article and Find Full Text PDF

Levulinic acid is a significant platform chemical obtained from biomass and can potentially be used to produce value-added biofuels, biopolymers, and biopharmaceuticals. This study aims at statistically optimizing levulinic acid production from agrowastes. Based on the total carbohydrate content (71.

View Article and Find Full Text PDF
Article Synopsis
  • Research on producing biofuels from medium- and long-chain hydrocarbons is growing, focusing on using microbial lipids from agrowastes.
  • The study aimed to develop yeast strains that can withstand furan aldehydes, which inhibit microorganisms in biomass-derived hydrolysates.
  • An evolved strain of Rhodosporidium toruloides demonstrated significantly improved growth and lipid production when exposed to furan aldehydes, suggesting a promising method for biofuel production using agricultural waste.
View Article and Find Full Text PDF

The valorization of CO into valuable products is a sustainable strategy to help overcome the climate crisis. In particular, biological conversion is attractive as it can produce long-chain hydrocarbons such as terpenoids. This study reports the high yield of β-farnesene production from CO by expressing heterologous β-farnesene synthase (FS) into Rhodobacter sphaeroides.

View Article and Find Full Text PDF

Given that traditional biorefineries have been based on microbial fermentation to produce useful fuels, materials, and chemicals as metabolites, saccharification is an important step to obtain fermentable sugars from biomass. It is well-known that glycosidic hydrolases (GHs) are responsible for the saccharification of recalcitrant polysaccharides through hydrolysis, but the discovery of lytic polysaccharide monooxygenase (LPMO), which is a kind of oxidative enzyme involved in cleaving polysaccharides and boosting GH performance, has profoundly changed the understanding of enzyme-based saccharification. This review briefly introduces the classification, structural information, and catalytic mechanism of LPMOs.

View Article and Find Full Text PDF

In the bioproduction of glutaric acid, an emerging bioplastic monomer, α-ketoglutaric acid (α-KG) is required as an amine acceptor for 4-aminobutyrate aminotransferase (GabT)-driven conversion of 5-aminovalerate (5-AVA) to glutarate semialdehyde. Herein, instead of using expensive α-KG, an indirect α-KG supply system was developed using a relatively cheap alternative, monosodium glutamate (MSG), for l-glutamate oxidase (Gox)-based whole-cell conversion. Using 200 mM 5-AVA and 30 mM MSG initially with Gox, 67.

View Article and Find Full Text PDF

With concerns over global warming and climate change, many efforts have been devoted to mitigate atmospheric CO level. As a CO utilization strategy, formate dehydrogenase (FDH) from Clostridium species were explored to discover O-tolerant and efficient FDHs that can catalyze CO to formate (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Microalgae have been researched for 70 years, but biodiesel has struggled due to low competitiveness and global trends against internal combustion engines.
  • Interest in reducing CO emissions has increased as global warming disasters become more frequent.
  • New strategies include developing drop-in fuels for aviation and maritime, stable outdoor cultivation for CO sequestration, and integrated refining processes for multiple product outputs, positioning the microalgal industry as vital for a future bio-based economy.
View Article and Find Full Text PDF

Herein, it was unearthed that manganese peroxidase (MnP) from Phanerochaete chrysosporium, a lignin-degrading enzyme, is capable of not only directly decomposing cellulosic components but also boosting cellulase activity. MnP decomposes various cellulosic substrates (carboxymethyl cellulose, cellobiose [CMC], and Avicel®) and produces reducing sugars rather than oxidized sugars such as lactone and ketoaldolase. MnP with Mn in acetate buffer evolves the Mn-acetate complex functioning as a strong oxidant, and the non-specificity of Mn-acetate enables cellulose-decomposition.

View Article and Find Full Text PDF

Endo-1,4-β-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion.

View Article and Find Full Text PDF

Given that (i) levulinic acid (LA) is one of the most significant platform chemicals derived from biomass and (ii) 4-hydroxyvaleric acid (4-HV) is a potential LA derivative, the aim of this study is to achieve chemoenzymatic valorization of LA, which was obtained from agricultural wastes, to 4-HV. The thermochemical process utilized agricultural wastes (i.e.

View Article and Find Full Text PDF

The recalcitrance of petroleum-based plastics causes severe environmental problems and has accelerated research into production of biodegradable polymers from inexpensive and sustainable feedstocks. Various microorganisms are capable of producing Polyhydroxybutyrate (PHB), a representative biodegradable polymer, under nutrient-limited conditions, among which CO-utilizing microorganisms are of primary interest. Herein, we discuss recent progress on bacterial strains including proteobacteria, purple non-sulfur bacteria, and cyanobacteria in terms of CO-containing carbon sources, PHB-production capability, and genetic modification.

View Article and Find Full Text PDF

Given that lipase is an enzyme applicable in various industrial fields and water-miscible organic solvents are important reaction media for developing industrial-scale biocatalysis, a structure-based strategy was explored to stabilize lipase A from Bacillus subtilis in a water-ethanol cosolvent. Site-directed mutagenesis of ethanol-interacting sites resulted in 4 mutants, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The text reviews the microbial CO electrobiorefinery, focusing on microbial electrosynthesis (MES) that combines electrochemical and biological processes for producing biofuels and chemicals from CO.
  • It discusses recent advancements in bioelectrochemical conversion of CO, highlighting microbial CO-fixation and the use of electricity to enhance production.
  • The review also addresses current challenges in MES and suggests technical strategies, such as optimizing biocathodes, using electron mediators, and incorporating novel microorganisms to boost output from CO.
View Article and Find Full Text PDF

Due to climate change, recent research interests have increased towards CO utilization as a strategy to mitigate the atmospheric CO level. Herein, we aimed to explore formate dehydrogenases (FDHs) from chemoautotroph to discover an efficient and O-tolerant biocatalyst for catalyzing the CO reduction to a versatile formate. Through genome-mining and phylogenetic analysis, the FDH from Rhodobacter aestuarii (RaFDH) was newly discovered as a promising O-tolernat CO reductase and was successfully expressed in Escherichia coli.

View Article and Find Full Text PDF

Background: In the biorefinery utilizing lignocellulosic biomasses, lignin decomposition to value-added phenolic derivatives is a key issue, and recently biocatalytic delignification is emerging owing to its superior selectivity, low energy consumption, and unparalleled sustainability. However, besides heme-containing peroxidases and laccases, information about lignolytic biocatalysts is still limited till date.

Results: Herein, we report a promiscuous activity of tyrosinase which is closely associated with delignification requiring high redox potentials (>1.

View Article and Find Full Text PDF

Although aerobic CO dehydrogenases (CODHs) might be applicable in various fields, their practical applications have been hampered by low activity and no heterologous expression. We, for the first time, could functionally express recombinant PsCODH in E. coli and obtained a highly concentrated recombinant enzyme using an easy and convenient method.

View Article and Find Full Text PDF

Lignocellulosic biomass is being preferred as a feedstock in the biorefinery, but lignocellulosic hydrolysate usually contains inhibitors against microbial fermentation. Among these inhibitors, phenolics are highly toxic to butyric acid-producing and butanol-producing Clostridium even at a low concentration. Herein, we developed an electrochemical polymerization method to detoxify phenolic compounds in lignocellulosic hydrolysate for efficient Clostridium fermentation.

View Article and Find Full Text PDF

In the biorefinery using lignocellulosic biomass as feedstock, pretreatment to breakdown or loosen lignin is important step and various approaches have been conducted. For biological pretreatment, we screened Bacillus subtilis KCTC2023 as a potential lignin-degrading bacterium based on veratryl alcohol (VA) oxidation test and the putative heme-containing dye-decolorizing peroxidase was found in the genome of B. subtilis KCTC2023.

View Article and Find Full Text PDF

L-DOPA (3,4-dihydroxyphenyl-L-alanine) has been widely used as a drug for Parkinson's disease caused by deficiency of the neurotransmitter dopamine. Since Monsanto developed the commercial process for L-DOPA synthesis for the first time, most of currently supplied L-DOPA has been produced by the asymmetric method, especially asymmetric hydrogenation. However, the asymmetric synthesis shows critical limitations such as a poor conversion rate and a low enantioselectivity.

View Article and Find Full Text PDF

In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C.

View Article and Find Full Text PDF