Adjusting the timing of floral transition is essential for reproductive success in plants. A number of flowering regulators integrate internal and external signals to precisely determine the time to flower. We here report that the AGAMOUS-LIKE 6 (AGL6) - EARLY FLOWERING 3 (ELF3) module regulates flowering in the FLOWERING LOCUS T (FT)-dependent pathway in .
View Article and Find Full Text PDFPlants exhibit an astonishing ability to regulate organ regeneration upon wounding. Excision of leaf explants promotes the biosynthesis of indole-3-acetic acid (IAA), which is polar-transported to excised regions, where cell fate transition leads to root founder cell specification to induce de novo root regeneration. The regeneration capacity of plants has been utilized to develop in vitro tissue culture technologies.
View Article and Find Full Text PDFPlants have an astonishing ability to regenerate new organs after wounding. Here, we report that the wound-inducible transcription factor ENHANCER OF SHOOT REGENERATION1 (ESR1) has a dual mode of action in activating ANTHRANILATE SYNTHASE ALPHA SUBUNIT1 (ASA1) expression to ensure auxin-dependent de novo root organogenesis locally at wound sites of Arabidopsis (Arabidopsis thaliana) leaf explants. In the first mode, ESR1 interacts with HISTONE DEACETYLASE6 (HDA6), and the ESR1-HDA6 complex directly binds to the JASMONATE-ZIM DOMAIN5 (JAZ5) locus, inhibiting JAZ5 expression through histone H3 deacetylation.
View Article and Find Full Text PDFChromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana.
View Article and Find Full Text PDFNeutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known.
View Article and Find Full Text PDFPlants are aerobic organisms that rely on molecular oxygen for respiratory energy production. Hypoxic conditions, with oxygen levels ranging between 1% and 5%, usually limit aerobic respiration and affect plant growth and development. Here, we demonstrate that the hypoxic microenvironment induced by active cell proliferation during the two-step plant regeneration process intrinsically represses the regeneration competence of the callus in Arabidopsis thaliana.
View Article and Find Full Text PDFChina and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM inorganic and organic species were determined in simultaneously collected PM integrated filters.
View Article and Find Full Text PDFA two-step plant regeneration has been widely exploited to genetic manipulation and genome engineering in plants. Despite technical importance, understanding of molecular mechanism underlying plant regeneration remains to be fully elucidated. Here, we found that the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1)-PHYTOCHROME INTERACTING FACTOR 4/5 (PIF4/5) module participates in callus formation.
View Article and Find Full Text PDFBackground: Proteomics and genomics studies have contributed to understanding the pathogenesis of chronic obstructive pulmonary disease (COPD), but previous studies have limitations. Here, using a machine learning (ML) algorithm, we attempted to identify pathways in cultured bronchial epithelial cells of COPD patients that were significantly affected when the cells were exposed to a cigarette smoke extract (CSE).
Methods: Small airway epithelial cells were collected from patients with COPD and those without COPD who underwent bronchoscopy.
Int J Chron Obstruct Pulmon Dis
March 2023
Background: Macroautophagy plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD), but the role of chaperone-mediated autophagy (CMA) has not been investigated. We investigated if and how CMA is involved in the pathogenesis of COPD.
Methods: We measured the level of lysosome-associated membrane protein-2A (LAMP-2A), which is a critical component of CMA that functions as a receptor for cytosolic substrate proteins, in total lung tissues and primary human bronchial epithelial cells (HBECs) from healthy never smokers, smokers, and COPD patients.
Inflammation, oxidative stress, and apoptosis are thought to be important causes of chronic obstructive pulmonary disease (COPD). We investigated the effect of YPL-001 (under phase 2a study, ClinicalTrials.gov identifier NCT02272634), a drug derived from var.
View Article and Find Full Text PDFCereblon (CRBN) has been shown to play an essential role in regulating inflammatory response and endoplasmic reticulum stress, thus mediating the development of various diseases. However, little is known about the roles of CRBN in chronic obstructive pulmonary disease (COPD) pathogenesis. We found that the protein levels of CRBN in lung homogenates from patients with COPD were lower than those from never smokers and smokers.
View Article and Find Full Text PDFWOX5 has a potential in activating cytokinin signaling and shoot regeneration, in addition to its role in pluripotency acquisition. Thus, overexpression of WOX5 maximizes plant regeneration capacity during tissue culture. In vitro plant regeneration involves two steps: callus formation and de novo shoot organogenesis.
View Article and Find Full Text PDFFront Plant Sci
May 2022
Wounding not only induces the expression of damage-responsive genes, but also initiates physiological changes, such as tissue repair, vascular reconnection, and organogenesis in locally damaged tissues. Wound-induced signals also propagate from the site of wounding to distal organs to elicit a systemic response. Electrical signaling, which is the most conserved type of systemic signaling in eukaryotes, is triggered by wound-induced membrane potential changes.
View Article and Find Full Text PDFWUSCHEL-RELATED HOMEOBOX 5 (WOX5) is a member of the WUSCHEL (WUS) homeodomain transcription factor family. is expressed mainly in the quiescent center (QC) and confers stem cell identity in the root apical meristem (RAM). Consistent with the role of in repressing root meristem development, we found that ectopic expression of disrupted shoot development by repressing shoot-related genes, such as ().
View Article and Find Full Text PDFObjectives: The aims of this study were to distinguish between behavioral compensation and behavioral recovery and to determine the role of stroke lesions and the optimal timing of rehabilitation in true recovery.
Design: Single pellet reaching test has been performed to analyze both quantitative and qualitative measures of forelimb function in a stroke animal model with lesions in the motor cortex, somatosensory cortex, or sensorimotor cortex. The four gestures of compensatory movement patterns that comprised a reach were head lift, limb withdrawal, pellet chasing, and phantom grasp.
Background: Despite the high disease burden of chronic obstructive pulmonary disease (COPD) and risk of acute COPD exacerbation, few COPD biomarkers are available. As developmental endothelial locus-1 (DEL-1) has been proposed to possess beneficial effects, including anti-inflammatory effects, we hypothesized that DEL-1 could be a blood biomarker for COPD.
Objective: To elucidate the role of plasma DEL-1 as a biomarker of COPD in terms of pathogenesis and for predicting acute exacerbation.
Plants exhibit high regenerative capacity, which is controlled by various genetic factors. Here, we report that ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2) controls de novo shoot organogenesis by regulating auxin-cytokinin interaction. The auxin-inducible ATXR2 Trithorax Group (TrxG) protein temporally interacts with the cytokinin-responsive type-B ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) at early stages of shoot regeneration.
View Article and Find Full Text PDFA dual isotopes approach and the Bayesian isotope mixing model were applied to trace nitrogen pollution sources and to quantify their relative contribution to river water quality. We focused on two points to enhance the applicability of the method: 1) Direct measurement on the end-members to distinguish "sewage" and "manure" which used to be grouped in one pollution source as their isotope ranges overlap; 2) The Lagrangian sampling method was applied to consider the transport of nitrogen pollutants in a long river so that any fractionation process can be dealt with in the given Bayesian modeling framework. The results of the analysis confirmed the NO isotope composition in the river of interest to be within the range of NO with origins in "NH in fertilizer", "Soil N", and "Manure and sewage" pollution.
View Article and Find Full Text PDFLung epithelial cells serve as the first line of defense against various inhaled pollutant particles. To investigate the adverse health effects of organic components of fine particulate matter (PM) collected in Seoul, South Korea, we selected 12 PM samples from May 2016 to January 2017 and evaluated the effects of organic compounds of PM on inflammation, cellular aging, and macroautophagy in human lung epithelial cells isolated directly from healthy donors. Organic extracts of PM specifically induced neutrophilic chemokine and interleukin-8 expression via extracellular signal-regulated kinase activation.
View Article and Find Full Text PDFPatients with chronic obstructive pulmonary disease (COPD) are susceptible to infection owing to the impaired immune function of alveolar macrophages. This is presumed to be caused, at least partially, by cigarette smoke (CS), which is a major risk factor for COPD. Although CS has been reported to inhibit Toll-like receptor (TLR) function and phagocytosis in macrophages, the molecular mechanism of CS-mediated impairment of macrophage immune function has not been completely elucidated.
View Article and Find Full Text PDFInflammation, oxidative stress, and protease-antiprotease imbalance have been suggested to be a pathogenic triad in chronic obstructive pulmonary disease (COPD). However, it is not clear how proteases interact with components of inflammatory pathways. Therefore, this study aimed to evaluate the effect of neutrophil elastase (NE) on lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) production and determine the molecular mechanism in human bronchial epithelial cells (HBECs).
View Article and Find Full Text PDFPulmonary fibrosis is a progressive and lethal lung disease characterized by the proliferation and differentiation of lung fibroblasts and the accumulation of extracellular matrices. Since pulmonary fibrosis was reported to be associated with adenosine monophosphate-activated protein kinase (AMPK) activation, which is negatively regulated by cereblon (CRBN), we aimed to determine whether CRBN is involved in the development of pulmonary fibrosis. Therefore, we evaluated the role of CRBN in bleomycin (BLM)-induced pulmonary fibrosis in mice and in transforming growth factor-beta 1 (TGF-β1)-induced differentiation of human lung fibroblasts.
View Article and Find Full Text PDFPlant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated.
View Article and Find Full Text PDF