Biomed Microdevices
February 2016
Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
We propose a novel Complementary Metal Oxide Semiconductor (CMOS) based Lab-on-Chip (LoC) platform for trapping, rotation and detection of cells and microorganism utilizing dielectrophoresis (DEP). DEP is a highly selective function of the permittivity, size and shape of the entity, and also depends on the permittivity of its environment; these dependencies can be used to identify and trap particles of interest with high precision. Real-time monitoring of such cellular manipulation is also desirable.
View Article and Find Full Text PDFA novel multiplexed sensing scheme based on the measurement of the magnetic susceptibility of the affinity captured target molecules on magnetic nanoparticles in liquid suspension is proposed. The AC magnetic susceptibility provides a measurement of Brownian relaxation behavior of biomolecules bound to magnetic nanoparticles (MNPs) that is related to its hydrodynamic size. A room temperature, compact AC susceptometer is designed and developed to measure complex AC magnetic susceptibility of such magnetic nanoparticles.
View Article and Find Full Text PDF