The aim of this preliminary study was to evaluate the short-term changes of occlusal contacts and muscle activity after orthodontic treatment during the use of a multi-layer clear retainer. Evaluation was done with the T-scan and BioEMG systems. A total of 18 subjects were included, who were evaluated at three time intervals-T0 at debonding, T1 at one month after retainer delivery, and T2 at four months after retainer delivery.
View Article and Find Full Text PDFWe evaluated the prognostic implications of the circulating tumor cell (CTC) count in non-metastatic, HER2-negative breast cancer patients who failed to achieve pathologic complete response (pCR) after neoadjuvant chemotherapy (NCT). A total of 173, non-metastatic breast cancer patients treated with NCT were prospectively enrolled. CTCs were obtained from blood drawn pre-NCT and post-NCT using a SMART BIOPSY SYSTEM isolation kit (Cytogen Inc.
View Article and Find Full Text PDFDNA replicase polymerase ε (POLE) is critical in proofreading and correcting errors of DNA replication. Low POLE expression plays a pivotal role in accumulation of mutations and onset of cancer, contributing to development and growth of tumor cells. The aim of this study is to reveal the survival, alternative genes and antitumoral immune activities in non-small cell lung cancer (NSCLC) patients with low POLE expression and provide treatment strategies that can increase their survival rates.
View Article and Find Full Text PDFHER2-positive luminal B breast cancer (BC), a subset of the luminal B subtype, is ER-positive and HER2-positive BC which is approximately 10% of all BC. However, HER2-positive luminal B BC has received less attention and is less represented in previous molecular analyses than other subtypes. Hence, it is important to elucidate the molecular biology of HER2-positive luminal B BC to stratify patients in a way that allows them to receive their respective optimal treatment.
View Article and Find Full Text PDFDNA repair mechanisms maintain genomic integrity upon exposure to various types of DNA damage, which cause either single- or double-strand breaks in the DNA. Here, we propose a strategy for the functional study of single nucleotide polymorphisms (SNPs) in the human DNA repair genes XPD/ERCC2, RAD18, and KU70/XRCC6 and the checkpoint activation gene ATR that are essentially involved in the cell cycle and DNA damage repair. We analyzed the mutational effects of the DNA repair genes under DNA-damaging conditions, including ultraviolet irradiation and treatment with genotoxic reagents, using a Saccharomyces cerevisiae system to overcome the limitations of the human cell-based assay.
View Article and Find Full Text PDFThe popularity of clear overlay retainers (CORs) has increased recently because of their advantages such as better esthetics, cost effectiveness, easy fabrication, and good compliance. However, a deficiency in posterior occlusal settling is a reported limitation of CORs. The aim of this study was to evaluate the posterior occlusal contact changes in a new type of clear orthodontic retainer called Oral-treaper (OTP), which consists of three layers and has stronger mechanical characteristics than do conventional retainers.
View Article and Find Full Text PDFDrug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs.
View Article and Find Full Text PDFSystems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis.
View Article and Find Full Text PDFThe contribution of single nucleotide polymorphisms (SNPs) in base excision repair (BER) genes to the risk of breast cancer (BC) was evaluated by focusing on two key genes: apurinic/apyrimidinic endonuclease 1 (APEX1) and 8-oxoguanine DNA glycosylase (OGG1). Genetic variations in the genes encoding these DNA repair enzymes may alter their functions and increase susceptibility to carcinogenesis. The aim of this study was to analyze polymorphisms in two BER genes, exploring their associations and particularly the combined effects of these variants on BC risk in a Korean population.
View Article and Find Full Text PDFCD8+ T cells are key factors mediating hepatitis B virus (HBV) clearance. However, these cells are killed through HBV-induced apoptosis during the antigen-presenting period in HBV-induced chronic liver disease (CLD) patients. Interferon-inducible protein 6 (IFI6) delays type I interferon-induced apoptosis in cells.
View Article and Find Full Text PDFGranulysin (GNLY) is found in cytotoxic granules of cytolytic T lymphocytes and natural killer (NK) cells, which are critical for hepatitis B virus (HBV) clearance. GNLY cytotoxicity plays an important role in the defense against viruses or intracellular bacteria. We hypothesized that genetic variation in the GNLY gene could affect the resistance of hosts against HBV infection.
View Article and Find Full Text PDFBackground: Single nucleotide polymorphisms (SNPs) in nucleotide excision repair (NER) pathway genes may modulate DNA repair capacity and increase susceptibility to breast cancer (BC). A case-control study was conducted by evaluating genes involved in DNA repair to identify polymorphisms associated with BC.
Methods: The 384 SNPs of 38 candidate genes were genotyped using the Illumina GoldenGate method.