This work investigates the function of the oxygen partial pressure in photo-induced current measurement of extended defect properties related to the distribution and quantity of defect states in electronic structures. The Fermi level was adjusted by applying a negative gate bias in the TFT structure, and the measurable range of activation energy was extended to < 2.0 eV.
View Article and Find Full Text PDFInterest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3-10 cm(2)/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm(2)/vs and wide-bandgap is not suitable for photo/image sensor applications.
View Article and Find Full Text PDFUltra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies.
View Article and Find Full Text PDFA novel method to design metal oxide thin-film transistor (TFT) devices with high performance and high photostability for next-generation flat-panel displays is reported. Here, we developed bilayer metal oxide TFTs, where the front channel consists of indium-zinc-oxide (IZO) and the back channel material on top of it is hafnium-indium-zinc-oxide (HIZO). Density-of-states (DOS)-based modeling and device simulation were performed in order to determine the optimum thickness ratio within the IZO/HIZO stack that results in the best balance between device performance and stability.
View Article and Find Full Text PDF