Accurate nuclear segmentation in histopathology images plays a key role in digital pathology. It is considered a prerequisite for the determination of cell phenotype, nuclear morphometrics, cell classification, and the grading and prognosis of cancer. However, it is a very challenging task because of the different types of nuclei, large intraclass variations, and diverse cell morphologies.
View Article and Find Full Text PDFThe conventional finger-vein recognition system is trained using one type of database and entails the serious problem of performance degradation when tested with different types of databases. This degradation is caused by changes in image characteristics due to variable factors such as position of camera, finger, and lighting. Therefore, each database has varying characteristics despite the same finger-vein modality.
View Article and Find Full Text PDFAlthough face-based biometric recognition systems have been widely used in many applications, this type of recognition method is still vulnerable to presentation attacks, which use fake samples to deceive the recognition system. To overcome this problem, presentation attack detection (PAD) methods for face recognition systems (face-PAD), which aim to classify real and presentation attack face images before performing a recognition task, have been developed. However, the performance of PAD systems is limited and biased due to the lack of presentation attack images for training PAD systems.
View Article and Find Full Text PDF