Importance: Cerebral vascular territories are of key clinical importance in patients with stroke, but available maps are highly variable and based on prior studies with small sample sizes.
Objective: To update and improve the state of knowledge on the supratentorial vascular supply to the brain by using the natural experiment of large artery infarcts and to map out the variable anatomy of the anterior, middle, and posterior cerebral artery (ACA, MCA, and PCA) territories.
Design, Setting, And Participants: In this cross-sectional study, digital maps of supratentorial infarcts were generated using diffusion-weighted magnetic resonance imaging (MRI) of 1160 patients with acute (<1-week) stroke recruited (May 2011 to February 2013) consecutively from 11 Korean stroke centers.
Leukoaraiosis or white matter hyperintensities are frequently observed on magnetic resonance imaging of stroke patients. We investigated how white matter hyperintensity volumes affect stroke outcomes, generally and by subtype. In total, 5035 acute ischaemic stroke patients were enrolled.
View Article and Find Full Text PDFRecently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths.
View Article and Find Full Text PDFBackground And Purpose: We aimed to generate rigorous graphical and statistical reference data based on volumetric measurements for assessing the relative severity of white matter hyperintensities (WMHs) in patients with stroke.
Methods: We prospectively mapped WMHs from 2699 patients with first-ever ischemic stroke (mean age=66.8±13.
Background: Conventional stroke registries contain alphanumeric text-based data on the clinical status of stroke patients, but this format captures imaging data in a very limited form. There is a need for a new type of stroke registry to capture both text- and image-based data.
Methods And Results: We designed a next-generation stroke registry containing quantitative magnetic resonance imaging (MRI) data, 'DUIH_SRegI', developed a supporting software package, 'Image_QNA', and performed experiments to assess the feasibility and utility of the system.