Publications by authors named "Kyouhei Hayashi"

Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement.

View Article and Find Full Text PDF

Optimization of HTS hit 1 for NPY Y5 receptor binding affinity, CYP450 inhibition, solubility and metabolic stability led to the identification of some orally available oxygen-linker derivatives for in vivo study. Among them, derivative 4i inhibited food intake induced by the NPY Y5 selective agonist, and chronic oral administration of 4i in DIO mice caused a dose-dependent reduction of body weight gain.

View Article and Find Full Text PDF

Optimization of lead compound 2 is described, mainly focusing on modification at the C-2 position of the benzimidazole core. Replacement of the phenyl linker of 2 with saturated rings resulted in identification of compound 8b which combines high Y5 receptor binding affinity with a good ADME profile leading to in vivo efficacy.

View Article and Find Full Text PDF

Optimization of our HTS hit 1, mainly focused on modification at the C-2 position of the benzimidazole core, is described. Elimination of the flexible and metabolically labile -S-CH(2)- part and utilization of less lipophilic pyridone substructure led to identification of novel NPY Y5 receptor antagonists 6, which have low to sub-nanomolar Y5 receptor binding affinity with improved CYP450 inhibition profiles, good solubilities and high metabolic stabilities.

View Article and Find Full Text PDF

We have previously developed a chromosome-splitting technique based on homologous recombination in Saccharomyces cerevisiae. To facilitate chromosome splitting at multiple sites, we focused on the delta sequences that are distributed in more than 200 copies throughout the yeast genome. We constructed a new chromosome-splitting vector harboring the YFLWdelta4 sequence and the hisG-URA3-hisG cassette, and transformed yeast cells with this vector.

View Article and Find Full Text PDF