Fertilized eggs begin to translate mRNAs at appropriate times and placements to control development, but how the translation is regulated remains unclear. Here, we found that mRNA encoding a transcriptional factor essential for development formed granules in a dormant state in zebrafish oocytes. Although the number of granules remained constant, Pou5f3 protein accumulated after fertilization.
View Article and Find Full Text PDFFused in sarcoma (FUS), a DNA/RNA-binding protein, undergoes liquid-liquid phase separation to form granules in cells. Aberrant FUS granulation is associated with neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We found that FUS granules contain a multifunctional AAA ATPase, valosin-containing protein (VCP), which is known as a key regulator of protein degradation.
View Article and Find Full Text PDFPluripotency of mouse embryonic stem cells is regulated by transcription factor regulatory networks as well as mechanical stimuli sensed by the cells. It has been unclear how the mechanical strain applied to the plasma membrane is transferred to the nucleus in mouse embryonic stem cells (mESCs). We here investigated the machinery of the mechanotransduction based on the finding that spontaneous differentiation of mESCs was inhibited with the downregulation of ROCK2 in cells attached to soft substrates.
View Article and Find Full Text PDFLocalization of RNAs to various subcellular destinations is a widely used mechanism that regulates a large proportion of transcripts in polarized cells. In many cases, such localized transcripts mediate spatial control of gene expression by being translationally silent while in transit and locally activated at their destination. Here, we investigate the translation of RNAs localized at dynamic cellular protrusions of human and mouse, migrating, mesenchymal cells.
View Article and Find Full Text PDFCytoplasmic inclusions of the RNA-binding protein fused in sarcoma (FUS) represent one type of membraneless ribonucleoprotein compartment. Formation of FUS inclusions is promoted by amyotrophic lateral sclerosis (ALS)-linked mutations, but the cellular functions affected upon inclusion formation are poorly defined. In this study, we find that FUS inclusions lead to the mislocalization of specific RNAs from fibroblast cell protrusions and neuronal axons.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
September 2016
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that has been associated with a diverse array of genetic changes. Prominent among these are mutations in RNA-binding proteins (RBPs) or repeat expansions that give rise to toxic RNA species. RBPs are additionally central components of pathologic aggregates that constitute a disease hallmark, suggesting that dysregulation of RNA metabolism underlies disease progression.
View Article and Find Full Text PDFRNA localization pathways direct numerous mRNAs to distinct subcellular regions and affect many physiological processes. In one such pathway the tumor-suppressor protein adenomatous polyposis coli (APC) targets RNAs to cell protrusions, forming APC-containing ribonucleoprotein complexes (APC-RNPs). Here, we show that APC-RNPs associate with the RNA-binding protein Fus/TLS (fused in sarcoma/translocated in liposarcoma).
View Article and Find Full Text PDFTemporal control of messenger RNA (mRNA) translation is an important mechanism for regulating cellular, neuronal, and developmental processes. However, mechanisms that coordinate timing of translational activation remain largely unresolved. Full-grown oocytes arrest meiosis at prophase I and deposit dormant mRNAs.
View Article and Find Full Text PDFSubcellular localization of messenger RNAs (mRNAs) to correct sites and translational activation at appropriate timings are crucial for normal progression of various biological events. However, a molecular link between the spatial regulation and temporal regulation remains unresolved. In immature zebrafish oocytes, translationally repressed cyclin B1 mRNA is localized to the animal polar cytoplasm and its temporally regulated translational activation in response to a maturation-inducing hormone is essential to promote oocyte maturation.
View Article and Find Full Text PDFTemporal translation control of localized mRNA is crucial for regulating various cellular and developmental processes. However, little is known about the mechanisms of temporal translation control of localized mRNA due to the limitation in technology. cyclin B1 mRNA at the animal polar cytoplasm of immature zebrafish oocytes is translationally repressed, and its activation is temporally regulated during maturation.
View Article and Find Full Text PDF