Publications by authors named "Kyosti Kontturi"

Lithium cations are shown to have a significant role in catalyzing oxygen and proton reduction along with S(N)1 reactions in biphasic systems. We propose that this catalytic effect is due to the surprising acidity of the hydrated cations; interactions between the cation and its surrounding solvation shell will make the constituent water molecules more acidic.

View Article and Find Full Text PDF

An all-copper redox flow battery based on strong complexation of Cu(+) with acetonitrile is demonstrated, exhibiting reasonable battery performance. More interestingly, the battery can be charged by heat sources of 100 °C, by distilling off the acetonitrile. This destabilizes the Cu(+) complex, leading to recovery of the starting materials.

View Article and Find Full Text PDF

The generation of α-ferrocenyl carbocations from ferrocenyl alcohols for S(N)1 substitution at the water-organic solvent interface is initiated by the transfer of protons into the organic phase. The proton flux, and hence the reaction rate, can be controlled by addition of a suitable "phase-transfer catalyst" anion or by external polarization with a potentiostat, providing a new method for the synthesis of ferrocene derivatives.

View Article and Find Full Text PDF

The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution.

View Article and Find Full Text PDF

Iron nanoparticles were prepared by decomposing iron pentacarbonyl (Fe(CO)(5)) at 170-220°C in the presence of amine surfactant and alkane solvent and under 1-12 bar carbon monoxide (CO) pressure. It was found that the amine not only acted as a stabilizer for the growing particles but also had a critical role as a promotor in the decomposition reaction. Relatively small changes in the CO pressure had anomalous effects on the particle size distribution.

View Article and Find Full Text PDF

The activities of a series of MoS(2)-based hydrogen evolution catalysts were studied by biphasic reactions monitored by UV/Vis spectroscopy. Carbon supported MoS(2) catalysts performed best due to an abundance of catalytic edge sites and strong electronic coupling of catalyst to support.

View Article and Find Full Text PDF

Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene-water interface was studied with two lipophilic electron donors of similar driving force, 1,1'-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but the mediator has a significant effect on the selectivity, as DMFc and the porphyrins themselves catalyze the decomposition and the further reduction of hydrogen peroxide. Density functional theory calculations indicate that the biscobaltporphyrin, 4,5-bis[5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl)]-9,9-dimethylxanthene, Co(2)(DPX), actually catalyzes oxygen reduction to hydrogen peroxide when oxygen is bound on the "exo" side ("dock-on") of the catalyst, while four-electron reduction takes place with oxygen bound on the "endo" side ("dock-in") of the molecule.

View Article and Find Full Text PDF

Flexible and magnetic artificial cilia were grown on various substrates by a facile bottom-up approach based on template-free magnetic assembly. The magnetic cilia formed spontaneously from a suspension of micrometer-sized ferromagnetic particles and elastomeric polymer in a liquid solvent when dried in an external magnetic field. The cilia mimics were mechanically stable even in the absence of an external magnetic field and a solvent due to the polymer, which acted as "glue" holding the particles together and connecting the cilia to the substrate.

View Article and Find Full Text PDF

The Langmuir-Schaefer (LS) technique was applied to prepare two-dimensional films of tridodecylamine (TDA)-stabilized Co nanoparticles. Ethylene glycol was used as the subphase because the Co nanoparticles spread better on it than on water. Surface pressure-area isotherms provided very little information on the floating films, and Brewster angle microscopy (BAM) was needed to characterize the film formation in situ.

View Article and Find Full Text PDF

The oxidation of Co nanoparticles stabilized with various ligands has been studied in an autoclave. Tridodecylamine stabilized Co nanoparticles with different sizes (8 nm, 22 nm and 36 nm) were prepared by thermal decomposition of Co(2)(CO)(8) in dodecane. The oxidation of the particles was studied by introducing oxygen into the autoclave and following the oxygen consumption with a pressure meter.

View Article and Find Full Text PDF

In this work, isothermal titration calorimetry (ITC) combined with zeta potential measurements was used to study the binding and partitioning of three beta-blockers, alprenolol, labetalol and propranolol, and the local anaesthetic tetracaine into liposomes. The thermodynamic parameters of enthalpy, entropy, the Gibbs energy and the binding constant were determined using the one site model. Furthermore, the binding constants corrected for the electrostatic contribution were used to assess the partition coefficients for the drugs.

View Article and Find Full Text PDF

Cobalt nanoparticles with average diameters of 8.8 nm and a standard deviation of 8% were obtained in a pressure drop induced decomposition synthesis in an autoclave. Samples were taken during the experiment and characterized with TEM.

View Article and Find Full Text PDF

We present an approach where biomolecular self-assembly is used in combination with lithography to produce patterns of metallic nanoparticles on a silicon substrate. This is achieved through a two-step method, resulting in attachment of nanoparticles on desired sites on the sample surfaces, which allowed a detailed characterization. First, a genetically modified hydrophobin protein, NCysHFBI, was attached by self-assembly on a hydrophobic surface or a surface patterned with hydrophobic and hydrophilic domains.

View Article and Find Full Text PDF

This study demonstrates a method where contact angle goniometry combined with surface tension measurements is used to assess the interactions of drugs with the hydrophobic core of a biological membrane. To this end, self-assembled monolayers (SAMs) of two alkanethiol and one thiolipid on Au(111) surfaces are used as model membranes and their interaction with six beta-blockers is studied. The Gibbs equation and the Langmuir adsorption isotherm are used to determine the partition coefficients for the adsorption of the drugs, which are compared to the octanol-water partition coefficients as well as the liposome-water partition coefficients.

View Article and Find Full Text PDF

The aggregation of the cationic polymer-plasmid DNA complexes of two commonly used polymers, polyethyleneimine (PEI) and poly-l-lysine (PLL) were systematically compared. The complexation was studied in 5% glucose solution at 25 degrees C using dynamic light scattering and isothermal titration calorimetry. The aggregation of the complexes was controlled by addition of the surfactant polyoxyethylene stearate (POES).

View Article and Find Full Text PDF

The stability and oxidation of copper nanoparticles stabilized with various ligands have been studied. Lauric acid-capped copper nanoparticles were prepared by a modified Brust-Schiffrin method. Then, ligand exchange with an excess of different capping agents was performed.

View Article and Find Full Text PDF

The influence of conformational and electrical properties of azobenzene molecules on the electron transfer barrier properties of their SAMs was studied by SECM and ellipsometry.

View Article and Find Full Text PDF

The thermodynamics of the interaction of positively charged drug molecules with negatively charged glycosaminoglycans (GAGs) is investigated by isothermal titration calorimetry (ITC) and fluorescence spectroscopy. The drugs considered are propranolol hydrochloride, tacrine, and aminacrine, and the polymers used as model GAGs are dextran sulfate, chondroitin sulfate, and hyaluronic acid. The ITC results show that the interaction between drugs and GAGs is via direct binding and that GAGs bind to drugs at one set of sites.

View Article and Find Full Text PDF

A novel proof of principle demonstration for contents release from liposomes that can be selectively activated by light irradiation is presented. The content release temperature was adjusted to slightly above body temperature, and hydrophobic or hydrophilic gold nanoparticles were incorporated into the lipid bilayer or the core of the liposomes, respectively. The release of a fluorescent marker was monitored upon exposure of the liposomes to UV light.

View Article and Find Full Text PDF

The interaction between glucose oxidase (GOx) and phospholipid monolayers is studied at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy. Electrochemical experiments show that the presence of GOx induces changes in the capacitance curves at both negative and positive potentials, which are successfully explained by a theoretical model based on the solution of the Poisson-Boltzmann equation. These changes are ascribed to a reduced partition coefficient of GOx and an increase of the permittivity of the lipid hydrocarbon domain.

View Article and Find Full Text PDF

The interaction of hybrid lipid/gramicidin A (gA) monolayers with dextran sulfate (DS) and the effect of this interaction on ion transfer at a liquid-liquid interface is reported. The interfacial and physicochemical properties are studied with Langmuir-Blodgett (LB) and electrochemical techniques. The results obtained from compression isotherms demonstrate that the interactions between the different species in the hybrid monolayer vary according to the chemical nature of the lipid (hydrocarbon region and charge of the head group).

View Article and Find Full Text PDF

The optical switching of coupled plasmons of silver nanoparticles derivatised with a photoisomerisable azobenzene ligand is presented. It is shown that nanoparticle clusters, linked with an azobenzene dithiol molecule, display switchable optical properties. The photoisomerisation of the linker molecule was used to vary the separation between nanoparticles, which was monitored by changes in the UV-Vis-spectra of the plasmon band of adjacent nanoparticles.

View Article and Find Full Text PDF

The interaction of phospholipid membranes and oligonucleotides complexed with a positively charged surfactant is reported. Phospholipid membranes were assembled at the interface between an immobilized organic phase and an aqueous phase using the Langmuir-Blodgett (L-B) technique. The interaction and adsorption of the naked oligonucleotides and oligonucleotides complexed with cetylpyridinium chloride (CP) was studied electrochemically using cyclic voltammetry (CV) and ac-voltammetry.

View Article and Find Full Text PDF

The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes.

View Article and Find Full Text PDF

The build up and electrochemical characterization of interfacial composite nanostructures containing a cationic polyelectrolyte and negatively charged mercaptosuccinic acid stabilized gold nanoparticles (AuNPs) is reported. The nanostructures were formed at the interface between two immiscible electrolyte solutions in which the organic phase is an immobilized 2-nitrophenyl octyl ether/PVC gel. The growth of the multilayer was verified with UV-vis spectra, and approximately a linear increase in UV-vis absorbance with increasing number of layers was observed.

View Article and Find Full Text PDF