Publications by authors named "Kyoo Heo"

Bioactive metabolites produced by symbiotic microbiota causally impact host health and disease, nonetheless, incomplete functional annotation of genes as well as complexities and dynamic nature of microbiota make understanding species-level contribution in production and actions difficult. Alpha-galactosylceramides produced by (BfaGC) are one of the first modulators of colonic immune development, but biosynthetic pathways and the significance of the single species in the symbiont community still remained elusive. To address these questions at the microbiota level, we have investigated the lipidomic profiles of prominent gut symbionts and the metagenome-level landscape of responsible gene signatures in the human gut.

View Article and Find Full Text PDF

The bacterial second messenger bis-(3'-5')-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain-containing diguanylate cyclases and degraded by HD-GYP domain-containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain-containing PDE-As to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist.

View Article and Find Full Text PDF

Biofilm formation protects bacteria from stresses including antibiotics and host immune responses. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae, but the underlying mechanisms remain unclear. Here, we show that EIIA, a component of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), regulates the intracellular concentration of the cyclic dinucleotide c-di-GMP, and thus biofilm formation.

View Article and Find Full Text PDF

Background: The expression of the Gloeobacter rhodopsin (GR) in a chemotrophic Escherichia coli enables the light-driven phototrophic energy generation. Adaptive laboratory evolution has been used for acquiring desired phenotype of microbial cells and for the elucidation of basic mechanism of molecular evolution. To develop an optimized strain for the artificially acquired phototrophic metabolism, an ancestral E.

View Article and Find Full Text PDF