In 2007, Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.
View Article and Find Full Text PDFThe fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification.
View Article and Find Full Text PDFBecause less than one-third of clinically relevant fusaria can be accurately identified to species level using phenotypic data (i.e., morphological species recognition), we constructed a three-locus DNA sequence database to facilitate molecular identification of the 69 Fusarium species associated with human or animal mycoses encountered in clinical microbiology laboratories.
View Article and Find Full Text PDFBackground: Fungi secrete various proteins that have diverse functions. Prediction of secretory proteins using only one program is unsatisfactory. To enhance prediction accuracy, we constructed Fungal Secretome Database (FSD).
View Article and Find Full Text PDFBackground: Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data.
View Article and Find Full Text PDFBackground: Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data.
View Article and Find Full Text PDFPhytophthora spp. represent a serious threat to agricultural and ecological systems. Many novel Phytophthora spp.
View Article and Find Full Text PDFSummary: Genomes of more than 60 fungal species have been sequenced to date, yet there has been no systematic approach to analyze fungal transcription factors (TFs) kingdom widely. We developed a standardized pipeline for annotating TFs in fungal genomes. Resulting data have been archived in a new database termed the Fungal Transcription Factor Database (FTFD).
View Article and Find Full Text PDFSince the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.
View Article and Find Full Text PDFAgrobacterium tumefaciens-mediated transformation (ATMT) has become a prevalent tool for functional genomics of fungi, but our understanding of T-DNA integration into the fungal genome remains limited relative to that in plants. Using a model plant-pathogenic fungus, Magnaporthe oryzae, here we report the most comprehensive analysis of T-DNA integration events in fungi and the development of an informatics infrastructure, termed a T-DNA analysis platform (TAP). We identified a total of 1110 T-DNA-tagged locations (TTLs) and processed the resulting data via TAP.
View Article and Find Full Text PDFRapid translation of genome sequences into meaningful biological information hinges on the integration of multiple experimental and informatics methods into a cohesive platform. Despite the explosion in the number of genome sequences available, such a platform does not exist for filamentous fungi. Here we present the development and application of a functional genomics and informatics platform for a model plant pathogenic fungus, Magnaporthe oryzae.
View Article and Find Full Text PDF