Objective: Past decades of research into contrast media injections and optimization thereof in radiology clinics have focused on scan acquisition parameters, patient-related factors, and contrast injection protocol variables. In this review, evidence is provided that a fourth bucket of crucial variables has been missed which account for previously unexplained phenomena and higher-than-expected variability in data. We propose how these critical factors should be considered and implemented in the contrast-medium administration protocols to optimize contrast enhancement.
View Article and Find Full Text PDFLearning electronic health records (EHRs) has received emerging attention because of its capability to facilitate accurate medical diagnosis. Since the EHRs contain enriched information specifying complex interactions between entities, modeling EHRs with graphs is shown to be effective in practice. The EHRs, however, present a great degree of heterogeneity, sparsity, and complexity, which hamper the performance of most of the models applied to them.
View Article and Find Full Text PDFIntroduction: The Mayo imaging classification model (MICM) requires a prestep qualitative assessment to determine whether a patient is in class 1 (typical) or class 2 (atypical), where patients assigned to class 2 are excluded from the MICM application.
Methods: We developed a deep learning-based method to automatically classify class 1 and 2 from magnetic resonance (MR) images and provide classification confidence utilizing abdominal -weighted MR images from 486 subjects, where transfer learning was applied. In addition, the explainable artificial intelligence (XAI) method was illustrated to enhance the explainability of the automated classification results.
Medical imaging is playing an important role in diagnosis and treatment of diseases. Generative artificial intelligence (AI) have shown great potential in enhancing medical imaging tasks such as data augmentation, image synthesis, image-to-image translation, and radiology report generation. This commentary aims to provide an overview of generative AI in medical imaging, discussing applications, challenges, and ethical considerations, while highlighting future research directions in this rapidly evolving field.
View Article and Find Full Text PDFIntroduction: Dysregulated cellular metabolism contributes to autosomal dominant polycystic kidney disease (ADPKD) pathogenesis. The Trial of Administration of Metformin in Polycystic Kidney Disease (TAME-PKD) tested the effects of metformin treatment over 2 years in adult ADPKD patients with mild-moderate disease severity. Metformin was found to be safe and tolerable with an insignificant trend toward reduced estimated glomerular filtration rate (eGFR) decline compared to placebo.
View Article and Find Full Text PDFNew image-derived biomarkers for patients affected by autosomal dominant polycystic kidney disease are needed to improve current clinical management. The measurement of total kidney volume (TKV) provides critical information for clinicians to drive care decisions. However, patients with similar TKV may present with very different phenotypes, often requiring subjective decisions based on other factors (e.
View Article and Find Full Text PDFBackground: Tolvaptan reduces height-adjusted total kidney volume (htTKV) and renal function decline in autosomal dominant polycystic kidney disease (ADPKD). This study was aimed at investigating the efficacy and safety of tolvaptan in Korean patients with ADPKD during the titration period.
Methods: This study is a multicenter, single-arm, open-label phase 4 study.
Background: Total kidney volume (TKV) is an important imaging biomarker in autosomal dominant polycystic kidney disease (ADPKD). Manual computation of TKV, particularly with the exclusion of exophytic cysts, is laborious and time consuming.
Methods: We developed a fully automated segmentation method for TKV using a deep learning network to selectively segment kidney regions while excluding exophytic cysts.
Background And Objectives: The progression of polycystic liver disease is not well understood. The purpose of the study is to evaluate the associations of polycystic liver progression with other disease progression variables and classify liver progression on the basis of patient's age, height-adjusted liver cystic volume, and height-adjusted liver volume.
Design, Setting, Participants, & Measurements: Prospective longitudinal magnetic resonance images from 670 patients with early autosomal dominant polycystic kidney disease for up to 14 years of follow-up were evaluated to measure height-adjusted liver cystic volume and height-adjusted liver volume.
Background: Cystogenesis in polycystic kidney disease (PKD) is likely accelerated by various renal insults, including crystal deposition, that activate renal tubule obstruction and dilation. We developed a capsule-based device that can be applied to cystic kidneys to restrict tubular lumen dilatation and cyst expansion.
Methods: Kidney capsule devices were designed from computed tomography images of wild-type and Cy/+ rats.
Background: Recent work suggests that dysregulated cellular metabolism may play a key role in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). The TAME-PKD clinical trial is testing the safety, tolerability, and efficacy of metformin, a regulator of cell metabolism, in patients with ADPKD. This study investigates the cross-sectional association of urinary metabolic biomarkers with ADPKD severity among TAME-PKD trial participants at baseline.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is characterized by growth of kidney cysts and glomerular filtration rate (GFR) decline. Metformin was found to impact cystogenesis in preclinical models of polycystic disease, is generally considered safe and may be a promising candidate for clinical investigation in ADPKD. In this phase 2 two-year trial, we randomly assigned 97 patients, 18-60 years of age, with ADPKD and estimated GFR over 50 ml/min/1.
View Article and Find Full Text PDFIntroduction: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst growth and a loss of functioning renal mass, but a decline in glomerular filtration rate (GFR) and onset of end-stage renal disease (ESRD) occur late in the disease course. There is therefore a great need for early prognostic biomarkers in this disorder.
Methods: We measured baseline serum fibroblast growth factor 23 (FGF23) levels in 192 patients with ADPKD from the Consortium for Radiologic Imaging Studies of PKD (CRISP) cohort that were followed for a median of 13 years and tested the association between FGF23 levels and change over time in height-adjusted total kidney volume (htTKV), GFR, and time to the composite endpoints of ESRD, death, and doubling of serum creatinine.
Background: Autosomal dominant polycystic kidney disease (ADPKD) has been associated with metabolic disturbances characterized by downregulation of AMP-activated protein kinase (AMPK), a critical sensor of the cellular energy status. Therapeutic activation of AMPK by metformin could inhibit cyst enlargement by inhibition of both the mammalian target of rapamycin pathway and fluid secretion the CFTR chloride channel.
Methods: We designed a phase-2, randomized, placebo-controlled, clinical trial to assess the safety, tolerability, and efficacy of metformin on total kidney volume in adults without diabetes (age 18-60 years) with ADPKD and eGFR of ≥50 ml/min per 1.
Eur J Nucl Med Mol Imaging
October 2020
BACKGROUNDA treatment option for autosomal dominant polycystic kidney disease (ADPKD) has highlighted the need to identify rapidly progressive patients. Kidney size/age and genotype have predictive power for renal outcomes, but their relative and additive value, plus associated trajectories of disease progression, are not well defined.METHODSThe value of genotypic and/or kidney imaging data (Mayo Imaging Class; MIC) to predict the time to functional (end-stage kidney disease [ESKD] or decline in estimated glomerular filtration rate [eGFR]) or structural (increase in height-adjusted total kidney volume [htTKV]) outcomes were evaluated in a Mayo Clinic PKD1/PKD2 population, and eGFR and htTKV trajectories from 20-65 years of age were modeled and independently validated in similarly defined CRISP and HALT PKD patients.
View Article and Find Full Text PDFBackground: The Mayo Clinic imaging classification of autosomal dominant polycystic kidney disease (ADPKD) uses height-adjusted total kidney volume (htTKV) and age to identify patients at highest risk for disease progression. However, this classification applies only to patients with typical diffuse cystic disease (class 1). Because htTKV poorly predicts eGFR decline for the 5%-10% of patients with atypical morphology (class 2), imaging-based risk modeling remains unresolved.
View Article and Find Full Text PDFAutosomal dominant polycystic kidney disease (ADPKD) is an inherited, progressive nephropathy accounting for 4-10% of end stage renal disease worldwide. PKD1 and PKD2 are the most common disease loci, but even accounting for other genetic causes, about 7% of families remain unresolved. Typically, these unsolved cases have relatively mild kidney disease and often have a negative family history.
View Article and Find Full Text PDFBackground And Objectives: To evaluate the growth pattern of kidney cyst number and cyst volume in association with kidney size, demographics, and genotypes in autosomal dominant polycystic kidney disease.
Design, Setting, Participants, & Measurements: Kidney cyst number and cyst volume were measured from serial magnetic resonance images, giving a maximum follow-up of 14.23 years, from 241 patients with autosomal dominant polycystic kidney disease (15-46 years old at baseline).
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst and kidney growth, which is hypothesized to cause loss of functioning renal mass and eventually end-stage kidney disease. However, the time course of decline in glomerular filtration rate (GFR) is poorly defined. The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease study is a 14-year observational cohort study of 241 adults with ADPKD.
View Article and Find Full Text PDFBackground: Caffeine has been proposed, based on in vitro cultured cell studies, to accelerate progression of autosomal dominant polycystic kidney disease (ADPKD) by increasing kidney size. Since ADPKD patients are advised to minimize caffeine intake, we investigated the effect of caffeine on disease progression in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP), a prospective, observational cohort study.
Methods: Our study included 239 patients (mean age = 32.
Recent bold, eye-catching headline predictions made by nonradiologists, e.g., "in a few years, radiology will disappear" and "stop training radiologists now," are not only far from reality but also irresponsible and a disservice to the appropriate implementation and adoption of artificial intelligence (AI) technology to health care.
View Article and Find Full Text PDFBackground: Metformin inhibits cyclic AMP generation and activates AMP-activated protein kinase (AMPK), which inhibits the cystic fibrosis transmembrane conductance regulator and Mammalian Target of Rapamycin pathways. Together these effects may reduce cyst growth in autosomal dominant polycystic kidney disease (ADPKD).
Methods: A phase II, double-blinded randomized placebo-controlled trial of 26 months duration.