Aggregation is a critical limitation for the practical application of graphene-based materials. Herein, we report that graphene oxide (GO) nanosheets chemically modified with ethanolamine (EA), ethylene glycol (EG), and sulfanilic acid (SA) demonstrate superior dispersion stability in organic solvents, specifically EG, based on the differences in their covalent chemistries. Functionalized GO was successfully dispersed in EG at a concentration of 9.
View Article and Find Full Text PDFNanofluids with enhanced thermal properties are candidates for thermal management in automotive systems, with scope for improving energy efficiency. In particular, many studies have reported on dispersions of nanoparticles with long-term stability in the base fluid, with qualitative evaluations of the dispersion stability via either the naked eye or optical instruments. Additives such as surfactants can be used to enhance the dispersion of nanoparticles; however, this may diminish their intrinsic thermal properties.
View Article and Find Full Text PDFA novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed.
View Article and Find Full Text PDF