A clear understanding of cell fate regulation during differentiation is key in successfully using stem cells for therapeutic applications. Here, we report that mild electrical stimulation strongly influences embryonic stem cells to assume a neuronal fate. Although the resulting neuronal cells showed no sign of specific terminal differentiation in culture, they showed potential to differentiate into various types of neurons in vivo, and, in adult mice, contributed to the injured spinal cord as neuronal cells.
View Article and Find Full Text PDFMyelin is a multi-layered membranous lipid insulator surrounding axons that allows the rapid conduction of neuronal impulses. In the central nervous system (CNS), myelin is produced by oligodendrocytes. During development, morphologically immature oligodendrocyte precursor cells (OPCs) arise from neural stem cells before differentiating into myelinating oligodendrocytes shortly after birth.
View Article and Find Full Text PDFTo examine the role of neural cell adhesion molecule L1 in thalamocortical projections, we analysed L1 deficient (L1-/y) mice. Immunohistochemistry of pleiotrophin/HB-GAM, a marker for thalamocortical axons and axonal tracing experiments showed that thalamocortical axons were abnormally and highly fasciculated when they pass through the developing internal capsule. Within the cortex, however, their course was more diffuse.
View Article and Find Full Text PDFDramatic changes in morphology and myelin protein expression take place during the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes. Fyn tyrosine kinase was reported to play a central role in the differentiation process. Molecules that could induce Fyn signaling have not been studied.
View Article and Find Full Text PDFRecent in vitro study showed that astrocytes induce oligodendrocyte processes to adhere to axons. However, the role of astrocytes in myelination in vivo remains unknown. We have, therefore, conducted a study to clarify the possible involvement of astrocytes during the initial myelination process.
View Article and Find Full Text PDFDeletions in the DAP12 gene in humans result in Nasu-Hakola disease, characterized by a combination of bone fractures and psychotic symptoms similar to schizophrenia, rapidly progressing to presenile dementia. However, it is not known why these disorders develop upon deficiency in DAP12, an immunoreceptor signal activator protein initially identified in the immune system. Here we show that DAP12-deficient (DAP12(-/-)) mice develop an increased bone mass (osteopetrosis) and a reduction of myelin (hypomyelinosis) accentuated in the thalamus.
View Article and Find Full Text PDF