MELK is upregulated in various types of human cancer and is known to be associated with cancer progression, maintenance of stemness, and poor prognosis. OTS167, a MELK kinase inhibitor, shows potent growth-suppressive effect on human tumors in a xenograft model, but the detailed mode of action has not been fully elucidated. In this study, we demonstrate the molecular mechanism of action of MELK inhibitor OTS167 in a preclinical model.
View Article and Find Full Text PDFWe previously reported MELK (maternal embryonic leucine zipper kinase) as a novel therapeutic target for breast cancer. MELK was also reported to be highly upregulated in multiple types of human cancer. It was implied to play indispensable roles in cancer cell survival and indicated its involvement in the maintenance of tumor-initiating cells.
View Article and Find Full Text PDFA high expression of short and immature O-glycans is one of the prominent features of breast cancer cells, which would be attributed to the upregulated expression of glycosyltransferases. Therefore, a detailed elucidation of glycosyltransferases and their substrate(s) may improve our understandings for their roles in mammary carcinogenesis. Here we report that overexpression of polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6), a glycosyltransferase involved in the initial step of O-glycosylation, has transformational potentials through disruptive acinar morphogenesis and cellular changes similar to epithelial-to-mesenchymal transition in normal mammary epithelial cell, MCF10A.
View Article and Find Full Text PDFSemisynthetic cephalosporins, the best-selling antibiotics worldwide, are derived from 7-aminocephalosporanic acid (7-ACA). Currently, in the pharmaceutical industrie, 7-ACA is mainly produced from cephalosporin C by sequential application of D-amino acid oxidase and cephalosporin acylase. Here we study the potential of industrially amenable enzyme gamma-glutamyltranspeptidase from Bacillus subtilis for 7-ACA production, since the wild-type gamma-glutamyltranspeptidase of B.
View Article and Find Full Text PDFThe structure of O-glycosylated proteins is altered in breast cancer cells, but the mechanisms of such an aberrant modification have been largely unknown. We here report critical roles of a novel druggable target, polypeptide N-acetylgalactosaminyltransferase 6 (GALNT6), which is upregulated in a great majority of breast cancers and encodes a glycosyltransferase responsible for initiating mucin-type O-glycosylation. Knockdown of GALNT6 by small interfering RNA significantly enhanced cell adhesion function and suppressed the growth of breast cancer cells.
View Article and Find Full Text PDFBreast cancer is generated through a multistep genetic and epigenetic process including activations of oncogenes and inactivations of tumor suppressor genes. Here, we report a critical role of ubiquitin-conjugating enzyme E2T (UBE2T), an E2 ubiquitin-conjugating enzyme, in mammary carcinogenesis. Immunocytochemical staining and in vitro binding assay revealed that UBE2T interacted and colocalized with the BRCA1/BRCA1-associated RING domain protein (BARD1) complex.
View Article and Find Full Text PDFThrough analysis of the detailed genome-wide gene expression profiles of 81 breast tumors, we identified a novel gene, G-patch domain containing 2 (GPATCH2), that was overexpressed in the great majority of breast cancer cases. Treatment of breast cancer cells MCF-7 and T47D with siRNA against GPATCH2 effectively suppressed its expression, and resulted in the growth suppression of cancer cells, suggesting its essential role in breast cancer cell growth. We found an interaction of GPATCH2 protein with hPrp43, an RNA-dependent ATPase.
View Article and Find Full Text PDF7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12.
View Article and Find Full Text PDFThe regulatory particle non-ATPase subunit, Nas6p, from Saccharomyces cerevisiae has been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 41.43 (2), b = 61.
View Article and Find Full Text PDF