The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed.
View Article and Find Full Text PDFThe helical flow pump (HFP) was invented to develop a total artificial heart at the University of Tokyo in 2005. The HFP consists of the multi-vane impeller involving rotor magnets, a motor stator and pump housing having double-helical volutes. To investigate the characteristics of the HFP, computational fluid dynamics analysis was performed.
View Article and Find Full Text PDFThe helical flow pump (HFP) is newly developed blood pomp for total artificial heart (TAH). HFP can work with lower rotational speed than axial and centrifugal blood pump. It can be seen reasonable feature to generate pulsatile flow because high response performance can be realized.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
To realize a total artificial heart (TAH) with high performance, high durability, good anatomical fitting, and good blood compatibility, the helical flow TAH (HFTAH) has been developed with two helical flow pumps having hydrodynamic levitation impeller. The HFTAH was implanted in goats to investigate its anatomical fitting, blood compatibility, mechanical stability, control stability, and so on. The size of the HFTAH was designed to be 80 mm in diameter and 84 mm wide.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2015
The present control method used in our helical flow total artificial heart (HFTAH) would only need four parameters. Nowadays, gauge pressure sensors are being used to obtain the pressure needed for control parameters. Nevertheless, there are also many following problems such as calibration, maintenance, offset drift and infection due to the skin-penetrative lines for the usage of gauge pressure sensor.
View Article and Find Full Text PDF