Publications by authors named "Kynet Kong"

An increase in plant biomass production is desired to reduce emission of carbon dioxide emissions and arrest global climate change because it will provide a more source of energy production than fossil fuels. Recently, we found that forced expression of the rice gene increased aboveground growth by . 2-fold in the transgenic plants.

View Article and Find Full Text PDF

Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV). The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi) in order to increase biomass yield, an important aspect for bioethanol production.

View Article and Find Full Text PDF

Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes.

View Article and Find Full Text PDF

Cucumber mosaic virus (CMV) is a tripartite, positive sense RNA virus causing infections and yield losses to many plant species. Here, we generated a construct containing inverted repeat of 1,793 bp fragment of defective CMV replicase gene derived from RNA2 of cucumber mosaic virus strain O (CMV-O). The replicase gene was modified by deleting a 9 bp region between nucleotides 1909-1918.

View Article and Find Full Text PDF

Cucumber mosaic virus is an important plant pathogen with a broad host range encompassing many plant species. This study demonstrates the production of transgenic potato lines exhibiting complete resistance to cucumber mosaic virus strain O and Y by post transcriptional gene silencing. Two constructs were used, one, pEKH2IN2CMVai, contains inverted repeat of 1,138 bp fragment of a defective CMV replicase gene derived from RNA2 of cucumber mosaic virus strain O (CMV-O), while the other, TRV-based VIGS vector (pTRV2CMVai), contains the same fragment of the replicase gene, but without inverted repeat.

View Article and Find Full Text PDF