The actin cytoskeleton is a key determinant of cell structure and homeostasis. However, possible tissue-specific changes to actin dynamics during aging, notably brain aging, are not understood. Here, we show that there is an age-related increase in filamentous actin (F-actin) in Drosophila brains, which is counteracted by prolongevity interventions.
View Article and Find Full Text PDFThe actin cytoskeleton is a key determinant of cell and tissue homeostasis. However, tissue-specific roles for actin dynamics in aging, notably brain aging, are not understood. Here, we show that there is an age-related increase in filamentous actin (F-actin) in brains, which is counteracted by prolongevity interventions.
View Article and Find Full Text PDF